| A. | 36π | B. | 28π | C. | 16π | D. | 12π |
分析 由于直三棱柱ABC-A1B1C1的底面ABC為等腰直角三角形,我們可以把直三棱柱ABC-A1B1C1補成四棱柱,則四棱柱的體對角線是其外接球的直徑,求出外接球的直徑后,代入外接球的表面積公式,即可求出該三棱柱的外接球的表面積.
解答
解:由于直三棱柱ABC-A1B1C1的底面ABC為等腰直角三角形,
把直三棱柱ABC-A1B1C1補成四棱柱,
則四棱柱的體對角線是其外接球的直徑,
所以外接球半徑為$\frac{1}{2}\sqrt{8+4}$=$\sqrt{3}$,
則三棱柱ABC-A1B1C1外接球的表面積是4πR2=12π.
故選:D.
點評 在求一個幾何體的外接球表面積(或體積)時,關鍵是求出外接球的半徑,我們通常有如下辦法:①構造三角形,解三角形求出R;②找出幾何體上到各頂點距離相等的點,即球心,進而求出R;③將幾何體補成一個長方體,其對角線即為球的直徑,進而求出R.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{a^3}{6}$ | B. | $\frac{a^3}{12}$ | C. | $\frac{{\sqrt{3}{a^3}}}{12}$ | D. | $\frac{{\sqrt{2}{a^3}}}{12}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 若a∥b,a∥α,則b∥α | B. | 若a⊥b,a⊥α,則b⊥α | ||
| C. | 若a∥α,a∥β,α∩β=b,則a∥b | D. | 若a∥α,α⊥β,則a⊥β |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -2 | B. | 0 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $α=\frac{π}{4},β=\frac{π}{8}$ | B. | $α=\frac{2π}{3},β=\frac{π}{6}$ | C. | $α=\frac{π}{3},β=\frac{π}{6}$ | D. | $α=\frac{5π}{6},β=\frac{2π}{3}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com