【題目】已知函數(shù)
.
(1)若函數(shù)
存在單調(diào)遞減區(qū)間,求實(shí)數(shù)
的取值范圍;
(2)設(shè)
是函數(shù)
的兩個(gè)極值點(diǎn),若
,求
的最大值.
【答案】(1)
;(2)
.
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為
有解,根據(jù)不等式的性質(zhì)求出a的范圍即可;
(2)求出函數(shù)的導(dǎo)數(shù),得到f(x1)﹣f(x2)=
,設(shè)
,令
,根據(jù)函數(shù)的單調(diào)性求出函數(shù)的極大值即可.
試題解析:(1)∵
,
∴
,
,
由題意知
在
上有解,即
有解,
∵
,∴
,當(dāng)且僅當(dāng)
時(shí)等號(hào)成立,
要使
有解,只需要
的最小值小于
,
∴
,解得實(shí)數(shù)
的取值范圍是
.
(2)∵
,
∴
,
,
由題意知
在
上有解,
∵
,設(shè)
,又
,∴
,
∴
,
.
則
![]()
![]()
![]()
,
∵
,∴設(shè)
,
,令
,
,
則
,∴
在
上單調(diào)遞減,
∵
,∴
,
∴
.
∵
,∴由
得
,
∴
,
故
的最大值為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)是定義在(0,+∞)上的非負(fù)可導(dǎo)函數(shù),且滿足xf′(x)+f(x)≤0,對任意正數(shù)a、b,若a<b,則必有( )
A.af(b)≤bf(a)
B.bf(a)≤af(b)
C.af(a)≤f(b)
D.bf(b)≤f(a)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大小;
(2)求sinB+sinC的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過F作垂直于x軸的直線交拋物線于A,B,兩點(diǎn),△AOB的面積為8,直線l與拋物線C相切于Q點(diǎn),P是l上一點(diǎn)(不與Q重合). ![]()
(1)求拋物線C的方程;
(2)若以線段PQ為直徑的圓恰好經(jīng)過F,求|PF|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}為等差數(shù)列,Sn為其前n項(xiàng)和.若a3=﹣6,S1=S5 , 則公差d=;Sn的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為2的正方體ABCD﹣A1B1C1D1中,點(diǎn)P是正方體棱上的一點(diǎn)(不包括棱的端點(diǎn)),滿足|PB|+|PD1|=
的點(diǎn)P的個(gè)數(shù)為;若滿足|PB|+|PD1|=m的點(diǎn)P的個(gè)數(shù)為6,則m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是2017年第一季度五省
情況圖,則下列陳述正確的是( )
![]()
①2017年第一季度
總量和增速均居同一位的省只有1個(gè);
②與去年同期相比,2017年第一季度五個(gè)省的
總量均實(shí)現(xiàn)了增長;
③去年同期的
總量前三位是江蘇、山東、浙江;
④2016年同期浙江的
總量也是第三位.
A. ①② B. ②③④ C. ②④ D. ①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列{an}滿足:a1=3,(2n﹣1)an+2=(2n+1)an﹣1+8n2(n>1,n∈N*),設(shè)
,數(shù)列{bn}的前n項(xiàng)的和Sn , 則Sn的取值范圍為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com