(本小題満分12分)
如圖,在正方體ABCD-A1B1C1D1中,E、F分別是BB1、CD的中點(diǎn).
(Ⅰ)證明AD⊥D1F;
(Ⅱ)求AE與D1F所成的角;
(Ⅲ)證明面AED⊥面A1FD1;
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在正方體
中,
為底面
的中心,
是
的中點(diǎn),設(shè)
是
上的中點(diǎn),求證:(1)
;
(2)平面
∥平面
.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形ABCD中,
為正三角形,
,
,AC與BD交于O點(diǎn).將
沿邊AC折起,使D點(diǎn)至P點(diǎn),已知PO與平面ABCD所成的角為
,且P點(diǎn)在平面ABCD內(nèi)的射影落在
內(nèi).![]()
(Ⅰ)求證:
平面PBD;
(Ⅱ)若已知二面角
的余弦值為
,求
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
20.(本小題滿分14分)![]()
四棱錐
中,側(cè)棱
,底面
是直角梯形,
,且
,
是
的中點(diǎn).
(1)求異面直線
與
所成的角;
(2)線段
上是否存在一點(diǎn)
,使得
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,在多面體ABDEC中,AE
平面ABC,BD//AE,且AC=AB=BC=AE=1,BD=2,F(xiàn)為CD中點(diǎn)。
(I)求證:EF//平面ABC;
(II)求證:
平面BCD;
(III)求多面體ABDEC的體積。![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
在如圖所示的多面體中,
⊥平面
,
,
,
,
,
,
,
是
的中點(diǎn).
(1)求證:
;
(2)求平面
與平面
所成銳二面角的余弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)如圖,正方形ABCD所在平面與平面四邊形ABEF所在平面互相垂直,
是等腰直角三角形,AB=AE,F(xiàn)A=FE,
∠AEF=45°
(1)求證:EF⊥平面BCE;![]()
(2)設(shè)線段CD的中點(diǎn)為P,在直線AE上是否存在一點(diǎn)M,使得PM//平面BCE?若存在,請指出點(diǎn)M的位置,并證明你的結(jié)論;若不存在,請說明理由。![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,平面ABCD⊥平面ABEF,四邊形ABCD是正方形,四邊形ABEF是矩形,且AF=
AD=a,G是EF的中點(diǎn),則GB與平面AGC所成角的正弦值為( )![]()
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在空間直角坐標(biāo)系中的點(diǎn)P(a,b,c),有下列敘述:
①點(diǎn)P(a,b,c)關(guān)于橫軸(x軸)的對稱點(diǎn)是
;
②點(diǎn)P(a,b,c)關(guān)于yOz坐標(biāo)平面的對稱點(diǎn)為
;
③點(diǎn)P(a,b,c)關(guān)于縱軸(y軸)的對稱點(diǎn)是
;
④點(diǎn)P(a,b,c)關(guān)于坐標(biāo)原點(diǎn)的對稱點(diǎn)為
.
其中錯誤的敘述個數(shù)是( )
| A.1 |
| B.2 |
| C.3 |
| D.4 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com