設(shè)橢圓
+y2=1的左焦點為F,P為橢圓上一點,其橫坐標(biāo)為
,則|PF|等于( )
(A)
(B)
(C)
(D)![]()
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線E的中心為原點,F(3,0)是E的焦點,過F的直線l與E相交于A、B兩點,且AB的中點為N(-12,-15),則E的方程為( )
(A)
-
=1 (B)
-
=1
(C)
-
=1 (D)
-
=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓
+
=1(a>b>0),點P(
a,
a)在橢圓上.
(1)求橢圓的離心率;
(2)設(shè)A為橢圓的左頂點,O為坐標(biāo)原點,若點Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:
+
=1(a>b>0)的離心率為
,以原點為圓心,橢圓的短半軸為半徑的圓與直線x-y+
=0相切,過點P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;
(2)求
·
的取值范圍;
(3)若B點關(guān)于x軸的對稱點是E,證明:直線AE與x軸相交于定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,F是拋物線C:x2=2py(p>0)的焦點,M是拋物線C上位于第一象限內(nèi)的任意一點,過M,F,O三點的圓的圓心為Q,點Q到拋物線C的準(zhǔn)線的距離為
.
(1)求拋物線C的方程;
(2)是否存在點M,使得直線MQ與拋物線C相切于點M?若存在,求出點M的坐標(biāo);若不存在,說明理由.
(3)若點M的橫坐標(biāo)為
,直線l:y=kx+
與拋物線C有兩個不同的交點A,B,l與圓Q有兩個不同的交點D,E,求當(dāng)
≤k≤2時,|AB|2+|DE|2的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知F1,F2分別是橢圓E:
+y2=1的左、右焦點,F1,F2關(guān)于直線x+y-2=0的對稱點是圓C的一條直徑的兩個端點.
(1)求圓C的方程;
(2)設(shè)過點F2的直線l被橢圓E和圓C所截得的弦長分別為a,b.當(dāng)ab最大時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
為征求個人所得稅法修改建議,某機(jī)構(gòu)對當(dāng)?shù)鼐用竦脑率杖胝{(diào)查了10 000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在[1 000,1 500)).
![]()
(1)求居民月收入在[3 000,4 000)的頻率;
(2)根據(jù)頻率分布直方圖估算樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10 000人中用分層抽樣方法抽出100人作進(jìn)一步分析,則月收入在[2 500,3 000)的這段應(yīng)抽多少人?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com