(本小題滿分13分)
如圖所示,傾斜角為
的直線經(jīng)過拋物線
的焦點(diǎn)F,且與拋物線交于A、B兩點(diǎn).
(1)求拋物線焦點(diǎn)F的坐標(biāo)及準(zhǔn)線l的方程;中國教考資源網(wǎng)
(2)若
為銳角,作線段AB的垂直平分線m交x軸于點(diǎn)P,證明|FP|-|FP|cos2
為定值,并求此定值.
(1)
解 由已知得2 p=8,∴
=2,…………………………………………2分
∴拋物線的焦點(diǎn)坐標(biāo)為F(2,0),準(zhǔn)線方程為x=-2.…………………………4分
(2)證明 設(shè)A(xA,yA),B(xB,yB),直線AB的斜率為k=tan
,則直線方程為y=k(x-2),
將此式代入y2=8x,得k2x2-4(k2+2)x+4k2=0,……………………………………6分
故xA+xB=
, ………………………………………………………6分
記直線m與AB的交點(diǎn)為E(xE,yE),則
xE=
=
,yE=k(xE-2)=
, ……………………………………8分
故直線m的方程為y-
=-![]()
, ………………………………9分
令y=0,得點(diǎn)P的橫坐標(biāo)xP=
+4, ………………………………10分
故|FP|=xP-2=
=
, …………………………………………11分
∴|FP|-|FP|cos2
=
(1-cos2
)=
=8,為定值.…………13分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù)![]()
.
(1)求函數(shù)
的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)
在區(qū)間
上的圖象.
(3)設(shè)0<x<
,且方程
有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)
是奇函數(shù).
(1)求
的值;(2)判斷函數(shù)
的單調(diào)性;
(3)若對(duì)任意的
,不等式恒成立
,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合
,
,
.
(1)求
(∁
; (2)若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱
的所有棱長(zhǎng)都為2,
為
的中點(diǎn)。
(Ⅰ)求證:
∥平面
;
(Ⅱ)求異面直線
與
所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知
為銳角,且
,函數(shù)
,數(shù)列{
}的首項(xiàng)
.
(1) 求函數(shù)
的表達(dá)式;
(2)在
中,若
A=2
,
,BC=2,求
的面積
(3) 求數(shù)列
的前
項(xiàng)和![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com