分析 (1)寫出分段函數(shù),即可求m的值;
(2)利用作差法,即可證明.
解答 (1)解:$f(x)=|{2x-1}|+x+\frac{1}{2}=\left\{{\begin{array}{l}{3x-\frac{1}{2},x≥\frac{1}{2}}\\{-x+\frac{3}{2},x<\frac{1}{2}}\end{array}}\right.$,
所以$f{(x)_{min}}=f({\frac{1}{2}})=1$,即m=1.
(2)證明:由于a3+b3-a2b-ab2=(a2-b2)(a-b)=(a-b)2(a+b)≥0,
由于a+b+c=1,所以a3+b3≥a2b+ab2=ab(a+b)=ab(1-c)=ab-abc,
同理可證:b3+c3≥bc-abc,c3+a3≥ca-abc,
三式相加得2(a3+b3+c3)≥ab+bc+ca-3abc.
點評 本題考查分段函數(shù),考查不等式的證明,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -2 | B. | -1 | C. | 5 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 當(dāng)α=0時,冪函數(shù)的圖象是一條直線 | |
| B. | 冪函數(shù)的圖象都經(jīng)過(0,0)和(1,1)兩個點 | |
| C. | 若函數(shù)f(x)為奇函數(shù),則f(x)在定義域內(nèi)是增函數(shù) | |
| D. | 冪函數(shù)f(x)的圖象不可能在第四象限內(nèi) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com