分析 (1)設(shè)等差數(shù)列列{an}的公差為d,運(yùn)用等差數(shù)列的通項(xiàng)公式,解方程可得首項(xiàng)和公差,即可得到所求通項(xiàng)公式;
(2)設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列{bn}的公比為q(q>0),運(yùn)用等比數(shù)列的通項(xiàng)公式,解方程可得首項(xiàng)和公比,即可得到所求通項(xiàng)公式和求和公式.
解答 解:(1)設(shè)等差數(shù)列列{an}的公差為d,由a2=2,a5=8
可得a1+d=2,a1+4d=8,
解得a1=2,d=2,
∴數(shù)列{an}的通項(xiàng)公式an=a1+(n-1)d=2n-2;
(2)設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列{bn}的公比為q(q>0),
由(1)知a3=4,
則b3=a3=4,T2=3,即q≠1,
即有b1q2=4,b1+b1q=3,解得b1=1,q=2或b1=9,q=-$\frac{2}{3}$(舍去),
則bn=b1qn-1=2n-1,Tn=$\frac{1-{2}^{n}}{1-2}$=2n-1.
點(diǎn)評 本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查方程思想的運(yùn)用,屬于基礎(chǔ)題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | -2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目: 來源: 題型:選擇題
| A. | 2477 | B. | 2427 | C. | 2427.5 | D. | 2477.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{2}$$\overrightarrow{c}$-$\frac{1}{6}$$\overrightarrow{a}$ | B. | $\overrightarrow{c}$-$\frac{1}{6}$$\overrightarrow{a}$ | C. | $\frac{3}{2}$$\overrightarrow{a}$-$\overrightarrow{c}$ | D. | $\overrightarrow{a}$+$\frac{1}{2}$$\stackrel{c}{→}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {x|x≥0} | B. | {x|x≤0} | C. | {x|x>0} | D. | {x|x<0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com