【題目】設(shè)點(diǎn)
的坐標(biāo)分別為
,直線
相交于點(diǎn)
,且它們的斜率之積
.
(1)求點(diǎn)
的軌跡方程;
(2)在點(diǎn)
的軌跡上有一點(diǎn)
且點(diǎn)
在
軸的上方,
,求
的范圍.
【答案】(1)
;(2)
.
【解析】試題分析:(1)設(shè)點(diǎn)
的坐標(biāo)為
,表示出兩直線的斜率,利用斜率之積等于
建立方程,化簡(jiǎn)即可求出軌跡方程;(2)點(diǎn)
的坐標(biāo)為
,利用斜率公式及夾角公式,可得
的關(guān)系,再結(jié)合點(diǎn)在橢圓上消元后根據(jù)橢圓的范圍建立不等關(guān)系,即可解出
的范圍.
試題解析:設(shè)點(diǎn)
的坐標(biāo)為![]()
因?yàn)辄c(diǎn)
坐標(biāo)為
,所以直線
的斜率![]()
同理,直線
的斜率![]()
由已知有![]()
化簡(jiǎn),得點(diǎn)
的軌跡方程為![]()
方法一:設(shè)點(diǎn)
的坐標(biāo)為
,過(guò)點(diǎn)
作
垂直于
軸,垂足為
,
![]()
![]()
因?yàn)辄c(diǎn)
的坐標(biāo)為
在點(diǎn)
的軌跡上,所以![]()
得![]()
, ![]()
因?yàn)?/span>
,
,
.
所以解得
.
方法二:設(shè)點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)分別為![]()
直線
的斜率
,直線
的斜率![]()
由
得![]()
所以
(1)
又由于點(diǎn)
的坐標(biāo)為為
在點(diǎn)
的軌跡上,所以![]()
得
,代入(1)得![]()
.
因?yàn)?/span>
,
,
.
所以解得
.
方法三設(shè)點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)分別為![]()
直線
的斜率
,直線
的斜率![]()
由
得![]()
所以
(1)
又由于點(diǎn)
的坐標(biāo)為為
在點(diǎn)
的軌跡上,所以![]()
![]()
代入(1)得
,
,
,
,
.
所以解得
.
方法四:設(shè)點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)分別為![]()
直線
的斜率
,直線
的斜率![]()
由
得![]()
所以
(1)
將
代入(1)得
,
,
.
因?yàn)?/span>
,
,
.
所以解得
.
方法五設(shè)點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)分別為![]()
直線
的斜率
,直線
的斜率![]()
由
得![]()
![]()
![]()
![]()
.
所以解得
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ax﹣a﹣x(a>0且a≠1)
(1)若f(1)<0,求a的取值范圍;
(2)若f(1)=
,g(x)=a2x+a﹣2x﹣2mf(x)且g(x)在[1,+∞)上的最小值為﹣2,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】F1 , F2分別是雙曲線x2﹣
=1(b>0)的左、右焦點(diǎn),過(guò)F2的直線l與雙曲線的左右兩支分別交于A,B兩點(diǎn),若△ABF1是等邊三角形,則該雙曲線的虛軸長(zhǎng)為( )
A.2 ![]()
B.2 ![]()
C.![]()
D.4 ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l與拋物線y2=2px(p>0)交于A,B兩點(diǎn),D為坐標(biāo)原點(diǎn),且OA⊥OB,OD⊥AB于點(diǎn)D,點(diǎn)D的坐標(biāo)為(1,2),則p= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修 4-4]參數(shù)方程與極坐標(biāo)系
在平面直角坐標(biāo)系
中,已知曲線
:
,以平面直角坐標(biāo)系
的原點(diǎn)
為極點(diǎn),
軸正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系.已知直線
:
.
(Ⅰ)試寫出直線
的直角坐標(biāo)方程和曲線
的參數(shù)方程;
(Ⅱ)在曲線
上求一點(diǎn)
,使點(diǎn)
到直線
的距離最大,并求出此最大值.
[選修 4-5]不等式選講
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答題。
(1)作出不等式x+y﹣3≤0在坐標(biāo)平面內(nèi)表示的區(qū)域(用陰影部分表示);
(2)求不等式x2﹣3x+2<0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a. ![]()
(1)求證:AB1⊥BC1;
(2)求二面角B﹣AB1﹣C的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知常數(shù)
,函數(shù)
.
(1)討論
在區(qū)間
上的單調(diào)性;
(2)若
存在兩個(gè)極值點(diǎn)
,且
,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax(a>0且a≠1)的圖象經(jīng)過(guò)點(diǎn)(2,
).
(1)比較f(2)與f(b2+2)的大;
(2)求函數(shù)g(x)=a
(x≥0)的值域.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com