【題目】已知
.
(Ⅰ)若
在
是單調(diào)遞增函數(shù),求實(shí)數(shù)
的取值范圍;
(Ⅱ)令
,若函數(shù)
有兩個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
【答案】(Ⅰ)
;(Ⅱ)
.
【解析】試題分析:(Ⅰ)
在
是單調(diào)遞增函數(shù),等價(jià)于
在
上恒成立,再轉(zhuǎn)化為
,求最值即可.
(Ⅱ)
有兩個(gè)零點(diǎn),可轉(zhuǎn)化為
,有兩個(gè)交點(diǎn)問題,用導(dǎo)數(shù)研究函數(shù)的增減變化情況即可.
試題解析:(Ⅰ)由題意知
,
.
在
是單調(diào)遞增函數(shù)
在
上恒成立
,
.
(Ⅱ)由題意知
,
由
,
令
,
,
由于
,可知
,
當(dāng)
時(shí),
;當(dāng)
時(shí),
,
故
在
上是單調(diào)減函數(shù),
在
上是單調(diào)增函數(shù),所以
,
函數(shù)
有兩個(gè)零點(diǎn)
,
因此實(shí)數(shù)a的取值范圍是
.
點(diǎn)晴:本題考查函數(shù)導(dǎo)數(shù)與單調(diào)性.確定零點(diǎn)的個(gè)數(shù)問題:可利用數(shù)形結(jié)合的辦法判斷交點(diǎn)個(gè)數(shù),如果函數(shù)較為復(fù)雜,可結(jié)合導(dǎo)數(shù)知識(shí)確定極值點(diǎn)和單調(diào)區(qū)間從而確定其大致圖象.方程的有解問題就是判斷是否存在零點(diǎn)的問題,可參變分離,轉(zhuǎn)化為求函數(shù)的值域問題處理. 恒成立問題以及可轉(zhuǎn)化為恒成立問題的問題,往往可利用參變分離的方法,轉(zhuǎn)化為求函數(shù)最值處理.也可構(gòu)造新函數(shù)然后利用導(dǎo)數(shù)來求解.注意利用數(shù)形結(jié)合的數(shù)學(xué)思想方法.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)﹣b(ω>0,0<φ<π)的圖象兩相鄰對稱軸之間的距離是
,若將f(x)的圖象先向右平移
個(gè)單位,再向上平移
個(gè)單位,所得函數(shù)g(x)為奇函數(shù).
(1)求f(x)的解析式;
(2)求f(x)的對稱軸及單調(diào)區(qū)間;
(3)若對任意x∈[0,
],f2(x)﹣(2+m)f(x)+2+m≤0恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國內(nèi),某知名連接店分店開張營業(yè)期間,在固定的時(shí)間段內(nèi)消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)的有效展開,參與抽獎(jiǎng)活動(dòng)的人數(shù)越來越多,該分店經(jīng)理對開業(yè)前7天參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì),
表示開業(yè)第
天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:
![]()
經(jīng)過進(jìn)一步的統(tǒng)計(jì)分析,發(fā)現(xiàn)
與
具有線性相關(guān)關(guān)系.
(1)如從這7天中隨便機(jī)抽取兩天,求至少有1天參加抽獎(jiǎng)人數(shù)超過10天的概率;
(2)根據(jù)上表給出的數(shù)據(jù),用最小二乘法,求出
與
的線性回歸方程
,并估計(jì)若該活動(dòng)持續(xù)10天,共有多少名顧客參加抽獎(jiǎng).
參考公式:
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用長14.8 m的鋼條制作一個(gè)長方體容器的框架,如果所制的底面的一邊比另一邊長0.5 m,那么容器的最大容積為________m3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中放有大小和形狀相同的小球若干,其中標(biāo)號為0的小球1個(gè),標(biāo)號為1的小球1個(gè),標(biāo)號為2的小球2個(gè).從袋子中不放回地隨機(jī)抽取小球兩個(gè),每次抽取一個(gè)球,記第一次取出的小球標(biāo)號為
,第二次取出的小球標(biāo)號為
.
(1)記事件
表示“
”,求事件
的概率;
(2)在區(qū)間
內(nèi)任取兩個(gè)實(shí)數(shù)
,
,求“事件
恒成立”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:以點(diǎn)C(t,
)(t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O,A,與y軸交于點(diǎn)O,B,其中O為原點(diǎn).
(1)當(dāng)t=2時(shí),求圓C的方程;
(2)求證:△OAB的面積為定值;
(3)設(shè)直線y=﹣2x+4與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x-k)ex,
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[0,1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n2+n,n∈N,數(shù)列{bn}滿足an=4log2bn+3,n∈N.
(1)求an,bn;
(2)求數(shù)列{anbn}的前n項(xiàng)和Tn.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com