【題目】已知函數(shù)
.
(1)求不等式
的解集;
(2)若關(guān)于
的不等式
的解集為
,求實數(shù)
的取值范圍.
【答案】
(1)解:∵不等式
,即
,
∴①
,或②
,或③
,
解①得:
;解②得:
;解③得:
.
即不等式的解集為
.
(2)解:∵
.
即
的最小值等于4.
∵關(guān)于
的不等式
的解集為
,∴
,解此不等式得:
,
故實數(shù)
的取值范圍是
.
【解析】對于(1),解含兩個絕對值的不等式,往往通過分區(qū)間討論去掉絕對值得到一般不等式求解。
對于(2)不等式解集為空集,往往轉(zhuǎn)化為恒成立或恒不成立來解決。一般會出現(xiàn)最值進行比較。
【考點精析】本題主要考查了絕對值不等式的解法的相關(guān)知識點,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)fn(x)=
x3﹣
(n+1)x2+x(n∈N*),數(shù)列{an}滿足an+1=f'n(an),a1=3.
(1)求a2 , a3 , a4;
(2)根據(jù)(1)猜想數(shù)列{an}的通項公式,并用數(shù)學(xué)歸納法證明;
(3)求證:
+
+…+
<
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,其中左焦點為
.
(1)求橢圓
的方程;
(2)過
的直線
與橢圓
相交于
兩點,若
的面積為
,求以
為圓心且與直線
相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點
處下上至
處有兩種路徑.一種是從
沿直線步行到
,另一種是先從
沿索道乘纜車到
,然后從
沿直線步行到
.現(xiàn)有甲、乙兩位游客從
處下山,甲沿
勻速步行,速度為
.在甲出發(fā)
后,乙從
乘纜車到
,在
處停留
后,再從
勻速步行到
,假設(shè)纜車勻速直線運動的速度為
,山路
長為1260
,經(jīng)測量
,
.
![]()
(1)求索道
的長;
(2)問:乙出發(fā)多少
后,乙在纜車上與甲的距離最短?
(3)為使兩位游客在
處互相等待的時間不超過
,乙步行的速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩船駛向一個不能同時停泊兩艘船的碼頭,它們在一天二十四小時內(nèi)到達(dá)該碼頭的時刻是等可能的.如果甲船停泊時間為1小時,乙船停泊時間為2小時,求它們中的任意一艘都不需要等待碼頭空出的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線
=1(a>1,b>0)的焦點距為2c,直線l過點(a,0)和(0,b),且點(1,0)到直線l的距離與點(﹣1,0)到直線l的距離之和
.求雙曲線的離心率e的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCP中,CP∥AB,CP⊥CB,AB=BC=
CP=2,D是CP中點,將△PAD沿AD折起,使得PD⊥面ABCD;![]()
(Ⅰ)求證:平面PAD⊥平面PCD;
(Ⅱ)若E是PC的中點.求三棱錐A﹣PEB的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某社區(qū)居民購買水果和牛奶的年支出費用與購買食品的年支出費用的關(guān)系,隨機調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計數(shù)據(jù)表:
購買食品的年支出費用x(萬元) | 2.09 | 2.15 | 2.50 | 2.84 | 2.92 |
購買水果和牛奶的年支出費用y(萬元) | 1.25 | 1.30 | 1.50 | 1.70 | 1.75 |
根據(jù)上表可得回歸直線方程
,其中
,據(jù)此估計,該社區(qū)一戶購買食品的年支出費用為3.00萬元的家庭購買水果和牛奶的年支出費用約為( )
A.1.79萬元
B.2.55萬元
C.1.91萬元
D.1.94萬元
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com