【題目】已知函數(shù)
,那么下列結(jié)論中錯(cuò)誤的是( )
A. 若
是
的極小值點(diǎn),則
在區(qū)間
上單調(diào)遞減
B. 函數(shù)
的圖像可以是中心對(duì)稱(chēng)圖形
C.
,使![]()
D. 若
是
的極值點(diǎn),則![]()
【答案】A
【解析】分析:求導(dǎo)f′(x)=3x2+2ax+b,導(dǎo)函數(shù)為二次函數(shù),若存在極小值點(diǎn),根據(jù)二次函數(shù)的圖象便知一定存在極大值點(diǎn),并且該極大值點(diǎn)在極小值點(diǎn)的左邊,從而知道存在實(shí)數(shù)x1<x0,使f(x)在(﹣∞,x1)上單調(diào)遞增,從而判斷出A的結(jié)論錯(cuò)誤,而根據(jù)f(x)的值域便知f(x)和x軸至少一個(gè)交點(diǎn),從而B(niǎo)的結(jié)論正確,而a=b=c=0時(shí),f(x)=x3為中心對(duì)稱(chēng)圖形,從而判斷C正確,而根據(jù)極值點(diǎn)的定義便知D正確,從而得出結(jié)論錯(cuò)誤的為A.
詳解:A.f′(x)=3x2+2ax+b,導(dǎo)函數(shù)為二次函數(shù);
∴在極小值點(diǎn)的左邊有一個(gè)極大值點(diǎn),即方程f′(x)=0的另一根,設(shè)為x1;
則x1<x0,且x<x1時(shí),f′(x)>0;
即函數(shù)f(x)在(﹣∞,x1)上單調(diào)遞增,∴選項(xiàng)A錯(cuò)誤;
B.該函數(shù)的值域?yàn)椋ī?/span>∞,+∞),∴f(x)的圖象和x軸至少一個(gè)交點(diǎn);
∴x0∈R,使f(x0)=0;∴選項(xiàng)B正確;
C.當(dāng)a=b=c=0時(shí),f(x)=x3,為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱(chēng);
∴f(x)是中心對(duì)稱(chēng)圖形,∴選項(xiàng)C正確;
D.函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)為0,∴選項(xiàng)D正確.
故選:A.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出n的值為( ) (參考數(shù)據(jù):
≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)![]()
A.12
B.24
C.36
D.48
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的不等式:|2x﹣m|≤1的整數(shù)解有且僅有一個(gè)值為2.
(Ⅰ)求整數(shù)m的值;
(Ⅱ)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線(xiàn)性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為
=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線(xiàn)性相關(guān)關(guān)系
B. 回歸直線(xiàn)過(guò)樣本點(diǎn)的中心(
,
)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列兩個(gè)命題:
函數(shù)
在[2,+∞)單調(diào)遞增;
關(guān)于
的不等式
的解集為
.若
為真命題,
為假命題,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=lnx+
+ax(a∈R),g(x)=ex+
.
(1)討論f(x)的極值點(diǎn)的個(gè)數(shù);
(2)若對(duì)于x>0,總有f(x)≤g(x).(i)求實(shí)數(shù)a的取值范圍;(ii)求證:對(duì)于x>0,不等式ex+x2﹣(e+1)x+
>2成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是某地一家超市在2018年一月份某一周內(nèi)周2到周6的時(shí)間
與每天獲得的利潤(rùn)
(單位:萬(wàn)元)的有關(guān)數(shù)據(jù).
星期 | 星期2 | 星期3 | 星期4 | 星期5 | 星期6 |
利潤(rùn) | 2 | 3 | 5 | 6 | 9 |
(1)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線(xiàn)性回歸直線(xiàn)方程
;
(2)估計(jì)星期日獲得的利潤(rùn)為多少萬(wàn)元.
參考公式: ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的一段圖像如圖所示.
![]()
(1)求此函數(shù)的解析式;
(2)求此函數(shù)在
上的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知圓
與
軸的左右交點(diǎn)分別為
,與
軸正半軸的交點(diǎn)為
.
![]()
(1)若直線(xiàn)
過(guò)點(diǎn)
并且與圓
相切,求直線(xiàn)
的方程;
(2)若點(diǎn)
是圓
上第一象限內(nèi)的點(diǎn),直線(xiàn)
分別與
軸交于點(diǎn)
,點(diǎn)
是線(xiàn)段
的中點(diǎn),直線(xiàn)
,求直線(xiàn)
的斜率.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com