(本題滿分14分)
已知實(shí)數(shù)
,曲線
與直線
的交點(diǎn)為
(異于原點(diǎn)
),在曲線
上取一點(diǎn)
,過點(diǎn)
作
平行于
軸,交直線
于點(diǎn)
,過點(diǎn)
作
平行于
軸,交曲線
于點(diǎn)
,接著過點(diǎn)
作
平行于
軸,交直線
于點(diǎn)
,過點(diǎn)
作
平行于
軸,交曲線
于點(diǎn)
,如此下去,可以得到點(diǎn)
,
,…,
,… . 設(shè)點(diǎn)
的坐標(biāo)為
,
.
(Ⅰ)試用
表示
,并證明
;
(Ⅱ)試證明
,且
(
);
解析:(Ⅰ)點(diǎn)
的坐標(biāo)
滿足方程組
,所以
, ……………1分
解得:
,故
, ……………………… 2分
因?yàn)?IMG src='http://thumb.zyjl.cn/pic1/img/20091015/20091015111730007.gif' width=41 height=19>,所以故
,故
. ………3分
(Ⅱ)由已知
,
,
,
即:
, …………………………… 4分
所以![]()
因?yàn)?IMG src='http://thumb.zyjl.cn/pic1/img/20091015/20091015111731015.gif' width=105 height=21>,所以
. ……………………………… 5分
下面用數(shù)學(xué)歸納法證明
(
)w.w.w.k.s.5.u.c.o.m
1當(dāng)
時(shí),
成立;
2假設(shè)當(dāng)
時(shí),有
成立,(
)
則當(dāng)
時(shí),
………………………………… 6分
所以
…………………………… 7分
所以當(dāng)
時(shí)命題也成立,
綜上所述由1,2知
(
)成立.………………………………… 8分
(注:此問答題如:只是由圖可知,而不作嚴(yán)格證明,得分一律不超過2分)
(Ⅲ)當(dāng)
時(shí),
,
(
),…………9分
所以
.………………………………10分
因?yàn)?IMG src='http://thumb.zyjl.cn/pic1/img/20091015/20091015111732034.gif' width=39 height=41>,所以當(dāng)
時(shí),由(Ⅱ)知
,w.w.w.k.s.5.u.c.o.m
所以有
.……………………………………………………………12分
又因?yàn)?IMG src='http://thumb.zyjl.cn/pic1/img/20091015/20091015111732038.gif' width=168 height=35>, ![]()
所以
,
,…………………13分
故有:
….14分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)已知向量
,
,函數(shù)
. (Ⅰ)求
的單調(diào)增區(qū)間; (II)若在
中,角
所對(duì)的邊分別是
,且滿足:
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)已知
,且以下命題都為真命題:
命題
實(shí)系數(shù)一元二次方程
的兩根都是虛數(shù);
命題
存在復(fù)數(shù)
同時(shí)滿足
且
.
求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分14分)已知函數(shù)![]()
(1)若
,求x的值;
(2)若
對(duì)于
恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題
(本題滿分14分)
已知橢圓
:
的離心率為
,過坐標(biāo)原點(diǎn)
且斜率為
的直線
與
相交于
、
,
.
⑴求
、
的值;
⑵若動(dòng)圓
與橢圓
和直線
都沒有公共點(diǎn),試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題
((本題滿分14分)
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =
,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE = x,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF
(如圖).
(1)當(dāng)x=2時(shí),求證:BD⊥EG ;
(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為
,
求
的最大值;
![]()
![]()
(3)當(dāng)
取得最大值時(shí),求二面角D-BF-C的余弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com