【題目】如圖,在長方體
中,
、
分別是棱
,![]()
![]()
上的點(diǎn),
,![]()
(1) 求異面直線
與
所成角的余弦值;
(2) 證明![]()
平面![]()
![]()
(3) 求二面角
的正弦值.
【答案】(1)
,(2)見解析(3)![]()
【解析】
方法一:如圖所示,建立空間直角坐標(biāo)系,
![]()
點(diǎn)A為坐標(biāo)原點(diǎn),設(shè)
,依題意得
,
,
,![]()
(1) 解:易得
,![]()
于是![]()
所以異面直線
與
所成角的余弦值為![]()
(2) 證明:已知
,
,![]()
于是
·
=0,
·
=0.因此,
,
,又![]()
所以
平面![]()
(3)解:設(shè)平面
的法向量
,則
,即![]()
不妨令X=1,可得
.由(2)可知,
為平面
的一個(gè)法向量.
于是
,從而![]()
所以二面角
的正弦值為![]()
方法二:(1)解:設(shè)AB=1,可得AD=2,AA1=4,CF=1.CE=![]()
鏈接B1C,BC1,設(shè)B1C與BC1交于點(diǎn)M,易知A1D∥B1C,由
,可知EF∥BC1.故
是異面直線EF與A1D所成的角,易知BM=CM=
,所以
,所以異面直線FE與A1D所成角的余弦值為![]()
(2)證明:連接AC,設(shè)AC與DE交點(diǎn)N 因?yàn)?/span>
,所以
,從而
,又由于
,所以
,故AC⊥DE,又因?yàn)?/span>CC1⊥DE且
,所以DE⊥平面ACF,從而AF⊥DE.
連接BF,同理可證B1C⊥平面ABF,從而AF⊥B1C,所以AF⊥A1D因?yàn)?/span>
,所以AF⊥平面A1ED
(3)解:連接A1N.FN,由(2)可知DE⊥平面ACF,又NF
平面ACF, A1N
平面ACF,所以DE⊥NF,DE⊥A1N,故
為二面角A1-ED-F的平面角
易知
,所以
,又
所以
,在![]()
![]()
連接A1C1,A1F 在![]()
.所以![]()
所以二面角A1-DE-F正弦值為![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)教育部高考改革指導(dǎo)意見,廣東省從2021年正式實(shí)施“
”新的高考考試方案.為盡快了解學(xué)生的選科需求,及時(shí)調(diào)整學(xué)校人力資源配備.某校從高一學(xué)生中抽樣調(diào)查了100名同學(xué),在模擬分科選擇中,一半同學(xué)(其中男生38人)選擇了物理,另一半(其中男生14人)選擇了歷史.請完成以下
列聯(lián)表,并判斷能否有99.9%的把握說選科與性別有關(guān)?
參考公式:
,其中
為樣本容量.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |||
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | |||
選物理 | 選歷史 | 總計(jì) | ||||||||
男生 | ||||||||||
女生 | ||||||||||
總計(jì) | ||||||||||
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在斜三棱柱
中,側(cè)面
平面
,
,
,
,
是
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)在側(cè)棱
上確定一點(diǎn)
,使得二面角
的大小為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某蔬菜商店買進(jìn)的土豆
(噸)與出售天數(shù)
(天)之間的關(guān)系如下表所示:
| 2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 |
| 1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(1)請根據(jù)上表數(shù)據(jù)在下列網(wǎng)格紙中繪制散點(diǎn)圖;
![]()
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關(guān)于
的線性回歸方程
(其中
保留三位小數(shù));(注:
)
(3)在表格中(
的8個(gè)對應(yīng)點(diǎn)中,任取3個(gè)點(diǎn),記這3個(gè)點(diǎn)在直線
的下方的個(gè)數(shù)為
,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場計(jì)劃銷售某種產(chǎn)品,現(xiàn)邀請生產(chǎn)該產(chǎn)品的甲、乙兩個(gè)廠家進(jìn)場試銷10天,兩個(gè)廠家提供的返利方案如下:甲廠家每天固定返利70元,且每賣出一件產(chǎn)品廠家再返利2元;乙廠家無固定返利,賣出40件以內(nèi)(含40件)的產(chǎn)品,每件產(chǎn)品廠家返利4元,超出40件的部分每件返利6元.經(jīng)統(tǒng)計(jì),兩個(gè)廠家10天的試銷情況莖葉圖如下:
![]()
(Ⅰ)現(xiàn)從廠家試銷的10天中抽取兩天,求這兩天的銷售量都大于40的概率;
(Ⅱ)若將頻率視作概率,回答以下問題:
(ⅰ)記乙廠家的日返利額為
(單位:元),求
的分布列和數(shù)學(xué)期望;
(ⅱ)商場擬在甲、乙兩個(gè)廠家中選擇一家長期銷售,如果僅從日返利額的角度考慮,請利用所學(xué)的統(tǒng)計(jì)學(xué)知識為商場做出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一張矩形白紙
,
,
,
,
分別為
,
的中點(diǎn),現(xiàn)分別將
,
沿
,DF折起,且
、
在平面
同側(cè),下列命題正確的是_________(寫出所有正確命題的序號)
![]()
①平面
平面
時(shí),![]()
②當(dāng)平面
平面
時(shí),
平面![]()
③當(dāng)
、
重合于點(diǎn)
時(shí),![]()
④當(dāng)
、
重合于點(diǎn)
時(shí),三棱錐
的外接球的半徑為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
,直線
,動(dòng)圓P與圓M相外切,且與直線l相切.設(shè)動(dòng)圓圓心P的軌跡為E.
(1)求E的方程;
(2)若點(diǎn)A,B是E上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),且
,求證:直線AB恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若方程
有兩個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com