分析 (1)由三角形的內(nèi)角和及誘導(dǎo)公式結(jié)合三角形公式可得cosC,可得答案;
(2)由余弦定理可得b值,代入面積公式S=$\frac{1}{2}$absinC計(jì)算可得.
解答 解:(1)∵在△ABC中2cos(A-B)=1+4cos(A+C)cos(B+C),
∴2cos(A-B)=1+4(-cosB)(-cosA)=1+4cosAcosB,
∴2cosAcosB+2sinAsinB=1+4cosAcosB,
∴sinAsinB-cosAcosB=$\frac{1}{2}$,
∴cosC=-(sinAsinB-cosAcosB)=-$\frac{1}{2}$,
∴∠C=120°;
(2)∵a=5,c=7,∠C=120°,
∴由余弦定理可得c2=a2+b2-2abcosC,
代入數(shù)據(jù)可得49=25+b2+5b,解得b=3,或b=-8(舍去),
∴△ABC的面積S=$\frac{1}{2}$absinC=$\frac{1}{2}$×5×3×$\frac{\sqrt{3}}{2}$=$\frac{15\sqrt{3}}{4}$
點(diǎn)評(píng) 本題考查解三角形,涉及余弦定理和面積公式以及三角函數(shù)公式,屬中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{5}{17}$ | B. | $\frac{7}{17}$ | C. | $\frac{9}{17}$ | D. | $\frac{11}{17}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com