【題目】某市為了了解民眾對(duì)開展創(chuàng)建文明城市工作以來(lái)的滿意度,隨機(jī)調(diào)查了40名群眾,并將他們隨機(jī)分成A,B兩組,每組20人,A組群眾給第一階段的創(chuàng)文工作評(píng)分,B組群眾給第二階段的創(chuàng)文工作評(píng)分,根據(jù)兩組群眾的評(píng)分繪制了如圖莖葉圖:
![]()
根據(jù)莖葉圖比較群眾對(duì)兩個(gè)階段創(chuàng)文工作滿意度評(píng)分的平均值及集中程度
不要求計(jì)算出具體值,給出結(jié)論即可
;
根據(jù)群眾的評(píng)分將滿意度從低到高分為三個(gè)等級(jí):
滿意度評(píng)分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級(jí) | 不滿意 | 滿意 | 非常滿意 |
由頻率估計(jì)概率,判斷該市開展創(chuàng)文工作以來(lái)哪個(gè)階段的民眾滿意率高?說(shuō)明理由.
完成下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有
的把握認(rèn)為民眾對(duì)兩個(gè)階段創(chuàng)文工作的滿意度存在差異?
低于70分 | 不低于70分 | |
第一階段 | ||
第二階段 |
附:
|
|
|
|
k |
|
|
|
【答案】(1)見解析;(2)①第二階段更高;②有
的把握.
【解析】
(1)根據(jù)莖葉圖看出
組群眾給第二階段創(chuàng)文工作滿意度評(píng)分的平均值高于
組群眾的平均值,且給分相對(duì)于
組更集中些;
(2)①記
表示事件“第一階段創(chuàng)文工作滿意度評(píng)分不低于
分”,
表示事件“第二階段創(chuàng)文工作滿意度評(píng)分不低于
分”,由莖葉圖,利用頻率估計(jì)概率,計(jì)算
、
的值,比較大小即可;②填寫列聯(lián)表,計(jì)算
,對(duì)照臨界值得出結(jié)論.
(1)根據(jù)莖葉圖看出,
組群眾給第二階段創(chuàng)文工作滿意度評(píng)分的“葉”分布在“莖”的
上,也相對(duì)集中在峰值的附近
所以
組給第二階段創(chuàng)文工作滿意度評(píng)分的平均值高于
組群眾第一階段創(chuàng)文工作滿意度評(píng)分的平均值,給分相對(duì)于
組更集中些
(2)①記
表示事件“第一階段創(chuàng)文工作滿意度評(píng)分不低于
分”,
表示事件“第二階段創(chuàng)文工作滿意度評(píng)分不低于
分”
由莖葉圖可知,給第一階段評(píng)分的
名
組群眾中,評(píng)分不低于
分的有
人
給第二階段評(píng)分的
名
組群眾中,評(píng)分不低于
分的有
人,則由頻率估計(jì)概率:
,
,則![]()
所以該市開展創(chuàng)文工作以來(lái)第二階段的民眾滿意率比第一階段的高
②填寫列聯(lián)表如下,
低于 | 不低于 | |
第一階段 |
|
|
第二階段 |
|
|
計(jì)算![]()
所以有
的把握認(rèn)為民眾對(duì)兩個(gè)階段創(chuàng)文工作的滿意度存在差異
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓![]()
的左、右焦點(diǎn)分別為
,過
的直線交橢圓于
兩點(diǎn),若橢圓C的離心率為
,
的周長(zhǎng)為8.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線
與橢圓C交于
兩點(diǎn),是否存在實(shí)數(shù)k使得以
為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面四邊形
中,
,
是
,
中點(diǎn),
,
,
,將
沿對(duì)角線
折起至
,使平面
,則四面體
中,下列結(jié)論不正確的是( )
![]()
A.
平面![]()
B.異面直線
與
所成的角為![]()
C.異面直線
與
所成的角為![]()
D.直線
與平面
所成的角為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線
的頂點(diǎn)在原點(diǎn)
,對(duì)稱軸是
軸,且過點(diǎn)
.
(Ⅰ)求拋物線
的方程;
(Ⅱ)已知斜率為
的直線
交
軸于點(diǎn)
,且與曲線
相切于點(diǎn)
,點(diǎn)
在曲線
上,且直線
軸,
關(guān)于點(diǎn)
的對(duì)稱點(diǎn)為
,判斷點(diǎn)
是否共線,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】惠州市某學(xué)校需要從甲、乙兩名學(xué)生中選1人參加數(shù)學(xué)競(jìng)賽,抽取了近期兩人5次數(shù)學(xué)考試的分?jǐn)?shù),統(tǒng)計(jì)結(jié)果如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲 | 80 | 85 | 71 | 92 | 87 |
乙 | 90 | 76 | 75 | 92 | 82 |
(1)若從甲、乙兩人中選出1人參加數(shù)學(xué)競(jìng)賽,你認(rèn)為選誰(shuí)合適?請(qǐng)說(shuō)明理由.
(2)若數(shù)學(xué)競(jìng)賽分初賽和復(fù)賽,在初賽中答題方案如下:
每人從5道備選題中隨機(jī)抽取3道作答,若至少答對(duì)其中2道,則可參加復(fù)賽,否則被淘汰.假設(shè)被選中參賽的學(xué)生只會(huì)5道備選題中的3道,求該學(xué)生能進(jìn)人復(fù)賽的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某年數(shù)學(xué)競(jìng)賽邀請(qǐng)了一位來(lái)自
星球的選手參加填空題比賽,共10道題目,這位選手做題有一個(gè)古怪的習(xí)慣:先從最后一題(第10題)開始往前看,凡是遇到會(huì)的題目就作答,遇到不會(huì)的題目先跳過(允許跳過所有的題目),一直看到第1題,然后從第1題開始往后看,凡是遇到先前未答的題目就隨便寫個(gè)答案,遇到先前已答得題目則跳過(例如,他可以按照9、8、7、4、3、2、1、5、6、10的次序答題),這樣所有題目均有作答,則這位選手可能的答題次序有______種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱
的側(cè)面
是平行四邊形,
,平面
平面
,且
分別是
的中點(diǎn).
![]()
(Ⅰ)求證:
;
(Ⅱ)求證:
平面
;
(Ⅲ)在線段
上是否存在點(diǎn)
,使得
平面
?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,四邊形ABCD是直角梯形,
,
,
,M是棱PC上一點(diǎn),且
,
平面MBD.
(1)求實(shí)數(shù)λ的值;
(2)若平面
平面ABCD,
為等邊三角形,且三棱錐P-MBD的體積為2,求PA的長(zhǎng).
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,等腰梯形ABCD中,AB∥CD,AD=AB=BC=1,CD=2,E為CD中點(diǎn),AE與BD交于點(diǎn)O,將△ADE沿AE折起,使點(diǎn)D到達(dá)點(diǎn)P的位置(P平面ABCE).
(Ⅰ)證明:平面POB⊥平面ABCE;
(Ⅱ)若直線PB與平面ABCE所成的角為
,求二面角A-PE-C的余弦值.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com