【題目】一個圓錐的底面半徑為2,高為6,在其中有一個高為x的內(nèi)接圓柱.
(1)用x表示圓柱的軸截面面積S;
(2)當x為何值時,S最大?
【答案】(1) S=-
x2+4x(0<x<6).
(2) 當x=3時,S最大,最大值為6.
【解析】分析:(1)畫出圓錐的軸截面,將空間問題轉化為平面問題,然后根據(jù)相似三角形的性質(zhì)和比例的性質(zhì),得出內(nèi)接圓柱底面半徑r與x關系式即可
(2)根據(jù)二次函數(shù)的性質(zhì)易得到其最大值,及對應的x的值.
詳解:
畫出圓柱和圓錐的軸截面,
如圖所示,
![]()
設圓柱的底面半徑為r,則由三角形相似可得
=
,解得r=2-
.
(1)圓柱的軸截面面積
S=2r·x=2·(2-
)·x=-
x2+4x(0<x<6).
(2)∵S=-
x2+4x=-
(x2-6x)
=-
(x-3)2+6,
∴當x=3時,S最大,最大值為6.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:
,點
在x軸的正半軸上,過點M的直線
與拋物線C相交于A,B兩點,O為坐標原點.![]()
(1)若
,且直線
的斜率為1,求以AB為直徑的圓的方程;
(2)是否存在定點M,使得不論直線
繞點M如何轉動,
恒為定值?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線過點(3,-2)且與橢圓4x2+9y2=36有相同的焦點.
(I)求雙曲線的標準方程.
(II)若點M在雙曲線上,
是雙曲線的左、右焦點,且|MF1|+|MF2|=
試判斷
的形狀.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形
中,
,
,
,
,
、
分別在
、
上,
,現(xiàn)將四邊形
沿
折起,使平面
平面
.
(
)若
,是否存在折疊后的線段
上存在一點
,且
,使得
平面
?若存在,求出
的值;若不存在,說明理由.
(
)求三棱錐
的體積的最大值,并求此時點
到平面
的距離.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2018河南南陽市一中上學期第三次月考】已知點
為坐標原點,
是橢圓
上的兩個動點,滿足直線
與直線
關于直線
對稱.
(I)證明直線
的斜率為定值,并求出這個定值;
(II)求
的面積最大時直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分14分))
某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿場售價與上市時間的關系用圖一的一條折線表示;西紅柿的種植成本與上市時間的關系用圖二的拋物線段表示。
![]()
(Ⅰ)寫出圖一表示的市場售價與時間的函數(shù)關系式
;寫出圖二表示的種植成本與上市時間的函數(shù)關系式
;
(Ⅱ)假如設定市場售價減去種植成本為純收益,問何時上市的西紅柿純收益最大?(注:市場售價和種植成本的單位:元/102㎏,時間單位:天)
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com