分析 (1)由AD∥BC,能證明BC∥平面PAD.
(2)由線面垂直得PA⊥CD,由勾股定理得AC⊥CD,從而CD⊥平面PAC,進而得到AE⊥平面PCD,由此能證明PD⊥平面ABE.
解答 (1)證明:∵AD∥BC,![]()
AD?平面PAD,BC?平面PAD,
∴BC∥平面PAD.
(2)證明:∵PA⊥底面ABCD,CD?平面ABCD,
∴PA⊥CD,
∵底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=1,AD=2,PD與底面成30°角,
∴PA=$\frac{2\sqrt{3}}{3}$,AC=CD=$\sqrt{2}$,∴AC2+CD2=AD2,∴AC⊥CD,
又PA∩AC=A,∴CD⊥平面PAC,
∵AE?平面PAC,∴CD⊥AE,
又AE⊥PC,PC∩CD=C,∴AE⊥平面PCD,
∴AE⊥PD,又AB⊥PD,∴PD⊥平面ABE.
點評 本題考查線面平行、線面垂直的證明,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | p∧q | B. | p∧¬q | C. | ¬p∧q | D. | ¬p∧¬q |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{π}{2}$ | B. | $\frac{π}{6}$ | C. | $\frac{2π}{3}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | V=$\frac{1}{3}$abc(a,b,c為地面邊長) | |
| B. | V=$\frac{1}{3}$sh(s為地面面積,h為四面體的高) | |
| C. | V=$\frac{1}{3}$(S1+S2+S3+S4)r,(S1,S2,S3,S4分別為四個面的面積,r為內(nèi)切球的半徑) | |
| D. | V=$\frac{1}{3}$(ab+bc+ac)h,(a,b,c為地面邊長,h為四面體的高) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | p∧q | B. | p∨q | C. | ¬p | D. | (¬p)∨q |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com