已知
、
分別是橢圓![]()
的左、右焦點(diǎn),右焦點(diǎn)
到上頂點(diǎn)的距離為2,若![]()
(Ⅰ)求此橢圓
的方程;
(Ⅱ)直線
與橢圓
交于
兩點(diǎn),若弦
的中點(diǎn)為
,求直線
的方程.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知坐標(biāo)平面內(nèi)
:
,
:
.動(dòng)點(diǎn)P與
外切與
內(nèi)切.
(1)求動(dòng)圓心P的軌跡
的方程;
(2)若過D點(diǎn)的斜率為2的直線與曲線
交于兩點(diǎn)A、B,求AB的長;
(3)過D的動(dòng)直線與曲線
交于A、B兩點(diǎn),線段中點(diǎn)為M,求M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線方程2x2-y2=2.
(1)求以A(2,1)為中點(diǎn)的雙曲線的弦所在的直線方程;
(2)過點(diǎn)(1,1)能否作直線l,使l與雙曲線交于Q1,Q2兩點(diǎn),且Q1,Q2兩點(diǎn)的中點(diǎn)為(1,1)?如果存在,求出它的方程;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為
,點(diǎn)
是點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn),過點(diǎn)
的直線交拋物線于
兩點(diǎn)。
(Ⅰ)試問在
軸上是否存在不同于點(diǎn)
的一點(diǎn)
,使得
與
軸所在的直線所成的銳角相等,若存在,求出定點(diǎn)
的坐標(biāo),若不存在說明理由。
(Ⅱ)若
的面積為
,求向量
的夾角;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在坐標(biāo)原點(diǎn),短軸長為4,且有一個(gè)焦點(diǎn)與拋物線
的焦點(diǎn)重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經(jīng)過定點(diǎn)M(2,0)且斜率不為0的直線
交橢圓C于A、B兩點(diǎn),試問在x軸上是否另存在一個(gè)定點(diǎn)P使得
始終平分
?若存在求出
點(diǎn)坐標(biāo);若不存在請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
)如圖,橢圓
:
,
、
、
、
為橢圓
的頂點(diǎn) ![]()
(Ⅰ)若橢圓
上的點(diǎn)
到焦點(diǎn)距離的最大值為
,最小值為
,求橢圓方程;
(Ⅱ)已知:直線
相交于
,
兩點(diǎn)(
不是橢圓的左右頂點(diǎn)),并滿足
試研究:直線
是否過定點(diǎn)? 若過定點(diǎn),請(qǐng)求出定點(diǎn)坐標(biāo),若不過定點(diǎn),請(qǐng)說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心為直角坐標(biāo)系
的原點(diǎn),焦點(diǎn)在
軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.
(1)求橢圓
的方程;
(2)若
為橢圓
的動(dòng)點(diǎn),
為過
且垂直于
軸的直線上的點(diǎn),
(
為橢圓的離心率),求點(diǎn)
的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線y2=-x與直線y=k(x+1)交于A、B兩點(diǎn).
(1)求證:OA⊥OB;
(2)當(dāng)DAOB的面積等于
時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知A(-5,0),B(5,0),動(dòng)點(diǎn)P滿足|
|,
|
|,8成等差數(shù)列.
(1)求P點(diǎn)的軌跡方程;
(2)對(duì)于x軸上的點(diǎn)M,若滿足|
|·|
|=
,則稱點(diǎn)M為點(diǎn)P對(duì)應(yīng)的“比例點(diǎn)”.問:對(duì)任意一個(gè)確定的點(diǎn)P,它總能對(duì)應(yīng)幾個(gè)“比例點(diǎn)”?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com