分析 (1)令logax=t,換元可得;
(2)令g(x)=x2-2ax+1-a,問題等價于g(0)g(1)<0或$\left\{\begin{array}{l}{0<-\frac{-2a}{2}<1}\\{△=4{a}^{2}-4(1-a)=0}\end{array}\right.$,解不等式組可得a的范圍.
解答 解:(1)令logax=t,換元可得f(t)=t2-2at+1,
∴y=f(x)的解析式為f(x)=x2-2ax+1,定義域?yàn)镽;
(2)∵函數(shù)y=x2-2ax+1-a在(0,1)內(nèi)有且只有一個零點(diǎn),
令g(x)=x2-2ax+1-a,則g(0)g(1)<0或$\left\{\begin{array}{l}{0<-\frac{-2a}{2}<1}\\{△=4{a}^{2}-4(1-a)=0}\end{array}\right.$,
解得a=$\frac{\sqrt{5}-1}{2}$或$\frac{2}{3}$<a<1
點(diǎn)評 本題考查對數(shù)函數(shù)的圖象和性質(zhì),涉及函數(shù)零點(diǎn)的判定,屬基礎(chǔ)題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ∅ | B. | {1,4,5} | C. | {1,2,3,4,5} | D. | {2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com