【題目】在平面直角坐標(biāo)系
中,以
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,已知曲線
的參數(shù)方程為
(
為參數(shù),
),曲線
的極坐標(biāo)方程為:
.且兩曲線
與
交于
兩點(diǎn).
(1)求曲線
的直角坐標(biāo)方程;
(2)設(shè)
,若
成等比數(shù)列,求
的值.
【答案】(1)
,
;(2)![]()
【解析】
(1)由曲線
的參數(shù)方程,消參能求出曲線
的直角坐標(biāo)方程;曲線
的極坐標(biāo)方程轉(zhuǎn)化為
,由此能求出曲線
的直角坐標(biāo)方程.
(2)設(shè)直線的參數(shù)方程為
(
為參數(shù)),將參數(shù)方程代入曲線
,得
,由此能求出實(shí)數(shù)
的值.
(1)由曲線
的參數(shù)方程為
(
為參數(shù),
),
消參得曲線
的直角坐標(biāo)方程為
.
∵曲線
的極坐標(biāo)方程為:
.
∴
,
∴曲線
的直角坐標(biāo)方程為
.
(2)由直線
過(guò)點(diǎn)
,且傾斜角為
,
設(shè)直線的參數(shù)方程為
(
為參數(shù)),
將參數(shù)方程代入曲線
,得:
,
,解得
,
且
,
,
由
成等比數(shù)列,得
,
由直線參數(shù)方程的幾何意義知
,即![]()
∵
,
,
化簡(jiǎn)為
,
解得
或
(舍),
∴實(shí)數(shù)
的值為![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買一定金額商品后即可抽獎(jiǎng),每次抽獎(jiǎng)都從裝有4個(gè)紅球、6個(gè)白球的甲箱和裝有5個(gè)紅球、5個(gè)白球的乙箱中,各隨機(jī)摸出1個(gè)球,在摸出的2個(gè)球中,若都是紅球,則獲一等獎(jiǎng);若只有1個(gè)紅球,則獲二等獎(jiǎng);若沒(méi)有紅球,則不獲獎(jiǎng).
(1)求顧客抽獎(jiǎng)1次能獲獎(jiǎng)的概率;
(2)若某顧客有3次抽獎(jiǎng)機(jī)會(huì),記該顧客在3次抽獎(jiǎng)中獲一等獎(jiǎng)的次數(shù)為
,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓G:
的右焦點(diǎn)為F,過(guò)F的直線l交橢圓于A、B兩點(diǎn),直線與l不與坐標(biāo)軸平行,若AB的中點(diǎn)為N,O為坐標(biāo)原點(diǎn),直線ON交直線x=3于點(diǎn)M.
(1)求證:MF⊥l;
(2)求
的最大值,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年上半年我國(guó)多個(gè)省市暴發(fā)了“非洲豬瘟”疫情,生豬大量病死,存欄量急劇下降,一時(shí)間豬肉價(jià)格暴漲,其他肉類價(jià)格也跟著大幅上揚(yáng),嚴(yán)重影響了居民的生活.為了解決這個(gè)問(wèn)題,我國(guó)政府一方面鼓勵(lì)有條件的企業(yè)和散戶防控疫情,擴(kuò)大生產(chǎn);另一方面積極向多個(gè)國(guó)家開(kāi)放豬肉進(jìn)口,擴(kuò)大肉源,確保市場(chǎng)供給穩(wěn)定.某大型生豬生產(chǎn)企業(yè)分析當(dāng)前市場(chǎng)形勢(shì),決定響應(yīng)政府號(hào)召,擴(kuò)大生產(chǎn)決策層調(diào)閱了該企業(yè)過(guò)去生產(chǎn)相關(guān)數(shù)據(jù),就“一天中一頭豬的平均成本與生豬存欄數(shù)量之間的關(guān)系”進(jìn)行研究.現(xiàn)相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下表:
生豬存欄數(shù)量 | 2 | 3 | 4 | 5 | 8 |
頭豬每天平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
(1)研究員甲根據(jù)以上數(shù)據(jù)認(rèn)為
與
具有線性回歸關(guān)系,請(qǐng)幫他求出
關(guān)于
的線.性回歸方程
(保留小數(shù)點(diǎn)后兩位有效數(shù)字)
(2)研究員乙根據(jù)以上數(shù)據(jù)得出
與
的回歸模型:
.為了評(píng)價(jià)兩種模型的擬合效果,請(qǐng)完成以下任務(wù):
①完成下表(計(jì)算結(jié)果精確到0.01元)(備注:
稱為相應(yīng)于點(diǎn)
的殘差);
生豬存欄數(shù)量 | 2 | 3 | 4 | 5 | 8 | |
頭豬每天平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估計(jì)值 | |||||
殘差 | ||||||
模型乙 | 估計(jì)值 | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
殘差 | 0 | 0 | 0 | 0.14 | 0.1 | |
②分別計(jì)算模型甲與模型乙的殘差平方和
及
,并通過(guò)比較
的大小,判斷哪個(gè)模型擬合效果更好.
(3)根據(jù)市場(chǎng)調(diào)查,生豬存欄數(shù)量達(dá)到1萬(wàn)頭時(shí),飼養(yǎng)一頭豬每一天的平均收入為7.5元;生豬存欄數(shù)量達(dá)到1.2萬(wàn)頭時(shí),飼養(yǎng)一頭豬每一天的平均收入為7.2元若按(2)中擬合效果較好的模型計(jì)算一天中一頭豬的平均成本,問(wèn)該生豬存欄數(shù)量選擇1萬(wàn)頭還是1.2萬(wàn)頭能獲得更多利潤(rùn)?請(qǐng)說(shuō)明理由.(利潤(rùn)=收入-成本)
參考公式:
.
參考數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】河圖是上古時(shí)代神話傳說(shuō)中伏羲通過(guò)黃河中浮出龍馬身上的圖案,與自己的觀察,畫出的“八卦”,而龍馬身上的圖案就叫做“河圖”.把一到十分成五組,如圖,其口訣:一六共宗,為水居北;二七同道,為火居南;三八為朋,為木居?xùn)|;四九為友,為金居西;五十同途,為土居中.“河圖”將一到十分成五行屬性分別為金,木,水,火,土的五組,在五行的五種屬性中,五行相克的規(guī)律為:金克木,木克土,土克水,水克火,火克金;五行相生的規(guī)律為:木生火,火生土,土生金,金生水,水生木.現(xiàn)從這十個(gè)數(shù)中隨機(jī)抽取3個(gè)數(shù),則這3個(gè)數(shù)字的屬性互不相克的條件下,取到屬性為土的數(shù)字的概率為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查中學(xué)生每天玩游戲的時(shí)間是否與性別有關(guān),隨機(jī)抽取了男、女學(xué)生各50人進(jìn)行調(diào)查,根據(jù)其日均玩游戲的時(shí)間繪制了如下的頻率分布直方圖.
![]()
(1)求所調(diào)查學(xué)生日均玩游戲時(shí)間在
分鐘的人數(shù);
(2)將日均玩游戲時(shí)間不低于60分鐘的學(xué)生稱為“游戲迷”,已知“游戲迷”中女生有6人;
①根據(jù)已知條件,完成下面的
列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“游戲迷”和性別關(guān)系;
非游戲迷 | 游戲迷 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
②在所抽取的“游戲迷”中按照分層抽樣的方法抽取10人,再在這10人中任取9人進(jìn)行心理干預(yù),求這9人中男生全被抽中的概率.
附:
(其中
為樣本容量).
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
的兩個(gè)頂點(diǎn)
的坐標(biāo)分別為
,
,且
所在直線的斜率之積等于
,記頂點(diǎn)
的軌跡為
.
(Ⅰ)求頂點(diǎn)
的軌跡
的方程;
(Ⅱ)若直線
與曲線
交于
兩點(diǎn),點(diǎn)
在曲線
上,且
為
的重心(
為坐標(biāo)原點(diǎn)),求證:
的面積為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
為等差數(shù)列,
為等比數(shù)列,公比為
.令
.
(1)若
.
①當(dāng)
,求數(shù)列
的通項(xiàng)公式;
②設(shè)
,
,試比較
與
的大。坎⒆C明你的結(jié)論.
(2)問(wèn)集合
中最多有多少個(gè)元素?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一島礁旁有兩條航道
與
,
.一日,我方船只甲在
航道上巡邏,在與
相距50公里的點(diǎn)
處,發(fā)現(xiàn)不明身份的船乙剛駛過(guò)點(diǎn)
,并沿
方向以40公里/小時(shí)的速度運(yùn)動(dòng),船甲立即沿
方向以
公里/小時(shí)(
)的速度追擊,且甲到達(dá)點(diǎn)
即停止前行(乙可繼續(xù)前進(jìn)).設(shè)甲出發(fā)時(shí),經(jīng)過(guò)
小時(shí)甲,乙之間的距離為
公里,當(dāng)
最小時(shí),可以達(dá)到最佳的驅(qū)離距離.
![]()
(1)試求
的解析式,并寫出定義域;
(2)求最多經(jīng)過(guò)多長(zhǎng)時(shí)間,我船可以達(dá)到最佳的驅(qū)離距離?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com