分析 先求出$\frac{1}{2}$≤log2x≤2,再根據(jù)二次函數(shù)即可得到結(jié)論.
解答 解:由2x≤16得x≤4,log2x≤2,
即$\frac{1}{2}$≤log2x≤2,
$f(x)={log_2}\frac{x}{2}•{log_{\sqrt{2}}}\frac{{\sqrt{x}}}{2}$=(log2x-1)(log2x-2)=(log2x-$\frac{3}{2}$)2-$\frac{1}{4}$,
當${log_2}x=\frac{3}{2}$,$f{(x)_{min}}=-\frac{1}{4}$,當${log_2}x=\frac{1}{2}$,$f{(x)_{max}}=\frac{3}{4}$,
故f(x)的取值范圍為$[-\frac{1}{4},\frac{3}{4}]$.
點評 本題主要考查函數(shù)值域的計算,根據(jù)二次函數(shù)是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{9}$ | B. | $\frac{2}{9}$ | C. | $\frac{4}{9}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{3}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | {1,4} | B. | {1,5} | C. | {2,4} | D. | {2,5} |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com