【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)
(單位:千元)對年銷售量
(單位:t)和年利潤
(單位:千元)的影響.對近8年的年宣傳費(fèi)
和年銷售量
(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到右面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
![]()
|
|
|
|
|
|
|
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中
, ![]()
(1)根據(jù)散點(diǎn)圖判斷,
與
哪一個(gè)適宜作為年銷售量
關(guān)于年宣傳費(fèi)
的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立
關(guān)于
的回歸方程;
(3)已知這種產(chǎn)品的年利潤
與
的關(guān)系為
.根據(jù)(2)的結(jié)果回答下列問題:
①年宣傳費(fèi)
=49時(shí),年銷售量及年利潤的預(yù)報(bào)值是多少?
②年宣傳費(fèi)
為何值時(shí),年利潤的預(yù)報(bào)值最大?
附:對于一組數(shù)據(jù)
,
…,
,其回歸直線
的斜率和截距的最小二乘估計(jì)分別為
![]()
【答案】(1)y=c+d
適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型.(2)
=100.6+68
.(3)①年銷售量576.6,年利潤預(yù)報(bào)值66.32.②年宣傳費(fèi)為46.24千元時(shí),年利潤的預(yù)報(bào)值最大.
【解析】(Ⅰ)由散點(diǎn)圖可以判斷,y=c+d
適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型.
(Ⅱ)令w=
,先建立y關(guān)于w的線性回歸方程.由于
![]()
所以y關(guān)于w的線性回歸方程為
=100.6+68w,
因此y關(guān)于x的回歸方程為
=100.6+68
.
(Ⅲ) (。由(Ⅱ)知,當(dāng)x=49時(shí),年銷售量y的預(yù)報(bào)值
=100.6+68
=576.6,
年利潤z的預(yù)報(bào)值
=576.6×0.2-49=66.32.
(ⅱ)根據(jù)(Ⅱ)的結(jié)果知,年利潤z的預(yù)報(bào)值
=0.2(100.6+68
)-x=-x+13.6
+20.12,
∴當(dāng)
=
即x=46.24時(shí)
取最大值.
故宣傳費(fèi)用為46.24千元時(shí),年利潤的預(yù)報(bào)值最大.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,建立平面直角坐標(biāo)系xOy,x軸在地平面上,y軸垂直于地平面,單位長度為1千米.某炮位于坐標(biāo)原點(diǎn).已知炮彈發(fā)射后的軌跡在方程y=kx-
(1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).
![]()
(1)求炮的最大射程;
(2)設(shè)在第一象限有一飛行物(忽略其大小),其飛行高度為3.2千米,試問它的橫坐標(biāo)a不超過多少時(shí),炮彈可以擊中它?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是定義在
上的奇函數(shù),且當(dāng)
時(shí),
.
![]()
(1)求函數(shù)
的解析式;
(2)現(xiàn)已畫出函數(shù)
在
軸左側(cè)的圖象,如圖所示,請補(bǔ)全完整函數(shù)
的圖象;
(3)根據(jù)(2)中畫出的函數(shù)圖像,直接寫出函數(shù)
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
(
)的左右焦點(diǎn)分別為
,
,離心率為
,點(diǎn)
在橢圓
上,
,
,過
與坐標(biāo)軸不垂直的直線
與橢圓
交于
,
兩點(diǎn),
為
,
的中點(diǎn).
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知點(diǎn)
,且
,求直線
所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分形幾何學(xué)是數(shù)學(xué)家伯努瓦·曼德爾布羅在
世紀(jì)
年代創(chuàng)立的一門新的數(shù)學(xué)學(xué)科,它的創(chuàng)立為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.按照如圖所示的分形規(guī)律可得如圖乙所示的一個(gè)樹形圖:
若記圖乙中第
行白圈的個(gè)數(shù)為
,則
__________.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)四川省民政廳報(bào)告,2013年6月29日以來,四川省中東部出現(xiàn)強(qiáng)降雨天氣過程,局地出現(xiàn)大暴雨.暴雨洪澇災(zāi)害已造成遂寧、德陽、綿陽等12市34縣(市、區(qū))244萬人受災(zāi),共造成直接經(jīng)濟(jì)損失85502.41萬元.適逢暑假,小王在某小區(qū)調(diào)查了50戶居民由于洪災(zāi)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出頻率分布直方圖(如圖).
![]()
(1)若先從損失超過6000元的居民中隨機(jī)抽出2戶進(jìn)行調(diào)查,求這2戶不在同一小組的概率;(2)洪災(zāi)過后小區(qū)居委會(huì)號(hào)召小區(qū)居民為洪災(zāi)重災(zāi)區(qū)捐款,小王調(diào)查的50戶居民的捐款情況如表,在表格空白處填寫正確的數(shù)字,并說明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
![]()
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:臨界值表參考公式:K2=
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某小區(qū)準(zhǔn)備將閑置的一直角三角形(其中∠B=
,AB=a,BC=
a)地塊開發(fā)成公共綠地,設(shè)計(jì)時(shí),要求綠地部分有公共綠地走道MN,且兩邊是兩個(gè)關(guān)于走道MN對稱的三角形(△AMN和△A′MN),現(xiàn)考慮方便和綠地最大化原則,要求M點(diǎn)與B點(diǎn)不重合,A′落在邊BC上,設(shè)∠AMN=θ.
![]()
(1)若θ=
時(shí),綠地“最美”,求最美綠地的面積;
(2)為方便小區(qū)居民的行走,設(shè)計(jì)時(shí)要求將AN,A′N的值設(shè)計(jì)最短,求此時(shí)綠地公共走道的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形
中,已知
,點(diǎn)
、
分別在
、
上,且
,將四邊形
沿
折起,使點(diǎn)
在平面
上的射影
在直線
上.
![]()
![]()
(I)求證:
;
(II)求點(diǎn)
到平面
的距離;
(III)求直線
與平面
所成的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}滿足:|a2-a3|=10,a1a2a3=125.
(1) 求{an}的通項(xiàng)公式;
(2) 求證:
+
+…+
<1對任意正整數(shù)m都成立.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com