分析 (1)由已知可得:2c=4$\sqrt{2}$,b=2,a2=b2+c2,聯(lián)立解得即可得出.
(2)直線(xiàn)l的方程為:y-1=x+2,即y=x+3.設(shè)A(x1,y1),B(x2,y2).與題意方程聯(lián)立化為:4x2+18x+15=0,利用弦長(zhǎng)公式|AB|=$\sqrt{2[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$即可得出.
解答 解:(1)由已知可得:2c=4$\sqrt{2}$,b=2,a2=b2+c2,聯(lián)立解得:c=2$\sqrt{2}$,b=2,a2=12.
∴橢圓C的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}$=1.
(2)直線(xiàn)l的方程為:y-1=x+2,即y=x+3.設(shè)A(x1,y1),B(x2,y2).
聯(lián)立$\left\{\begin{array}{l}{y=x+3}\\{\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,化為:4x2+18x+15=0,
∴x1+x2=-$\frac{9}{2}$,x1•x2=$\frac{15}{4}$,
∴|AB|=$\sqrt{2[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{2×[(-\frac{9}{2})^{2}-4×\frac{15}{4}]}$=$\frac{\sqrt{42}}{2}$.
點(diǎn)評(píng) 本題考查了題意的標(biāo)準(zhǔn)方程及其性質(zhì)、直線(xiàn)與橢圓相交弦長(zhǎng)問(wèn)題、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 求24名男生的達(dá)標(biāo)率 | B. | 求24名男生的不達(dá)標(biāo)率 | ||
| C. | 求24名男生的達(dá)標(biāo)人數(shù) | D. | 求24名男生的不達(dá)標(biāo)人數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | f(x)的圖象關(guān)于直線(xiàn)x=$\frac{π}{3}$對(duì)稱(chēng) | |
| B. | f(x)的圖象關(guān)于點(diǎn)($\frac{π}{4}$,0)對(duì)稱(chēng) | |
| C. | 把f(x)的圖象向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度,得到一個(gè)偶函數(shù)的圖象 | |
| D. | f(x)的最小正周期為π,且在[0,$\frac{π}{6}$]上為增函數(shù) |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com