已知a>0,函數(shù)f(x)=ax-bx2.
(1)當(dāng)b>0時(shí),若對(duì)任意x∈R都有f(x)≤1,證明a≤
;
(2)當(dāng)b>1時(shí),證明對(duì)任意x∈[0,1],|f(x)|≤1的充要條件是b-1≤a≤
.
|
證明:(1)依題意設(shè)對(duì)任意x∈R都有f(x)≤1, ∵f(x)=-b(x- ∴f( ∵a>0,b>0,∴a≤ (2)必要性:對(duì)任意x∈[0,1],|f(x)|≤1 ∴f(1)≥-1,即a-b≥-1,∴a≥b-1. 對(duì)任意x∈[0,1],|f(x)|≤1 ∴a≤ 充分性:∵b>1,a≥b-1,對(duì)任意x∈[0,1],可以推出ax-bx2≥b(x-x2)-x≥-x≥-1,即ax-bx2≥-1. ∵b>1,a≤ ∴-1≤f(x)≤1. 綜上,當(dāng)b>1時(shí),對(duì)任意x∈[0,1],|f(x)|≤1的充要條件是b-1≤a≤ |
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| A、?x∈R,f(x)≤f(x0) | B、?x∈R,f(x)≥f(x0) | C、?x∈R,f(x)≤f(x0) | D、?x∈R,f(x)≥f(x0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 1 |
| 8 |
| 3 |
| 2 |
| ln3-ln2 |
| 5 |
| ln2 |
| 3 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com