【題目】某調(diào)查機構(gòu)對某校學(xué)生做了一個是否同意生“二孩”抽樣調(diào)查,該調(diào)查機構(gòu)從該校隨機抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”,現(xiàn)已得知100人中同意父母生“二孩”占60%,統(tǒng)計情況如下表:
同意 | 不同意 | 合計 | |
男生 | a | 5 | |
女生 | 40 | d | |
合計 | 100 |
(1)求 a,d 的值,根據(jù)以上數(shù)據(jù),能否有97.5%的把握認為是否同意父母生“二孩”與性別有關(guān)?請說明理由;
(2)將上述調(diào)查所得的頻率視為概率,現(xiàn)在從所有學(xué)生中,采用隨機抽樣的方法抽取4 位學(xué)生進行長期跟蹤調(diào)查,記被抽取的4位學(xué)生中持“同意”態(tài)度的人數(shù)為 X,求 X 的分布列及數(shù)學(xué)期望.
附:![]()
| 0.15 | 0.100 | 0.050 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)
, 有97.5%的把握認為是否同意父母生“二孩”與“性別”有關(guān);(2)詳見解析.
【解析】
(1)根據(jù)表格及同意父母生“二孩”占60%可求出
,
,根據(jù)公式計算結(jié)果即可確定有97.5%的把握認為是否同意父母生“二孩”與“性別”有關(guān)(2)由題意可知X服從二項分布,利用公式計算概率及期望即可.
(1)因為100人中同意父母生“二孩”占60%,
所以
,![]()
文(2)由列聯(lián)表可得![]()
而![]()
所以有97.5%的把握認為是否同意父母生“二孩”與“性別”有關(guān)
(2)①由題知持“同意”態(tài)度的學(xué)生的頻率為
,
即從學(xué)生中任意抽取到一名持“同意”態(tài)度的學(xué)生的概率為.由于總體容量很大,
故X服從二項分布,
即
從而X的分布列為
X | 0 | 1 | 2 | 3 | 4 |
X的數(shù)學(xué)期望為![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】田忌賽馬是
史記
中記載的一個故事,說的是齊國將軍田忌經(jīng)常與齊國眾公子賽馬,孫臏發(fā)也們的馬腳力都差不多,都分為上、中、下三等
于是孫臏給田忌將軍制定了一個必勝策略:比賽即將開始時,他讓田忌用下等馬對戰(zhàn)公子們的上等馬,用上等馬對戰(zhàn)公子們的中等馬,用中等馬對戰(zhàn)公子們的下等馬,從而使田忌贏得公子們許多賭注
假設(shè)田忌的各等級馬與某公子的各等級馬進行一場比賽獲勝的概率如表所示:
田忌的馬 | 上等馬 | 中等馬 | 下等馬 |
上等馬 |
|
| 1 |
中等馬 |
|
|
|
下等馬 | 0 |
|
|
比賽規(guī)則規(guī)定:一次比由三場賽馬組成,每場由公子和田忌各出一匹馬出騫,結(jié)果只有勝和負兩種,并且毎一方三場賽馬的馬的等級各不相同,三場比賽中至少獲勝兩場的一方為最終勝利者.
如果按孫臏的策略比賽一次,求田忌獲勝的概率;
如果比賽約定,只能同等級馬對戰(zhàn),每次比賽賭注1000金,即勝利者贏得對方1000金,每月比賽一次,求田忌一年賽馬獲利的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4支足球隊進行單循環(huán)比賽(任兩支球隊恰進行一場比賽),任兩支球隊之間勝率都是
.單循環(huán)比賽結(jié)束,以獲勝的場次數(shù)作為該隊的成績,成績按從大到小排名次順序,成績相同則名次相同.下列結(jié)論中正確的是( )
A.恰有四支球隊并列第一名為不可能事件B.有可能出現(xiàn)恰有三支球隊并列第一名
C.恰有兩支球隊并列第一名的概率為
D.只有一支球隊名列第一名的概率為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系
中,直線
的參數(shù)方程為
(
為參數(shù)).以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求直線
的普通方程和曲線
的直角坐標方程;
(2)若射線
(
)與直線
和曲線
分別交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年某市政府出臺了“2020年創(chuàng)建全國文明城市(簡稱創(chuàng)文)”的具體規(guī)劃,今日,作為“創(chuàng)文”項目之一的“市區(qū)公交站點的重新布局及建設(shè)”基本完成,市有關(guān)部門準備對項目進行調(diào)查,并根據(jù)調(diào)查結(jié)果決定是否驗收,調(diào)查人員分別在市區(qū)的各公交站點隨機抽取若干市民對該項目進行評分,并將結(jié)果繪制成如圖所示的頻率分布直方圖,相關(guān)規(guī)則為:①調(diào)查對象為本市市民,被調(diào)查者各自獨立評分;②采用百分制評分,
內(nèi)認定為滿意,80分及以上認定為非常滿意;③市民對公交站點布局的滿意率不低于60%即可進行驗收;④用樣本的頻率代替概率.
(1)求被調(diào)查者滿意或非常滿意該項目的頻率;
(2)若從該市的全體市民中隨機抽取3人,試估計恰有2人非常滿意該項目的概率;
(3)已知在評分低于60分的被調(diào)查者中,老年人占
,現(xiàn)從評分低于60分的被調(diào)查者中按年齡分層抽取9人以便了解不滿意的原因,并從中選取2人擔任群眾督察員,記
為群眾督查員中老年人的人數(shù),求隨機變量
的分布列及其數(shù)學(xué)期望
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直三棱柱
中的底面為等腰直角三角形,
,點
分別是邊
,
上動點,若直線
平面
,點
為線段
的中點,則
點的軌跡為
![]()
A. 雙曲線的一支
一部分
B. 圓弧
一部分![]()
C. 線段
去掉一個端點
D. 拋物線的一部分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2012年12月18日,作為全國首批開展空氣質(zhì)量新標準監(jiān)測的74個城市之一,鄭州市正式發(fā)布
數(shù)據(jù).資料表明,近幾年來,鄭州市霧霾治理取得了很大成效,空氣質(zhì)量與前幾年相比得到了很大改善.鄭州市設(shè)有9個監(jiān)測站點監(jiān)測空氣質(zhì)量指數(shù)(
),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有2,5,2個監(jiān)測站點,以9個站點測得的
的平均值為依據(jù),播報我市的空氣質(zhì)量.
(Ⅰ)若某日播報的
為118,已知輕度污染區(qū)
的平均值為74,中度污染區(qū)
的平均值為114,求重度污染區(qū)
的平均值;
(Ⅱ)如圖是2018年11月的30天中
的分布,11月份僅有一天
在
內(nèi).
組數(shù) | 分組 | 天數(shù) |
第一組 |
| 3 |
第二組 |
| 4 |
第三組 |
| 4 |
第四組 |
| 6 |
第五組 |
| 5 |
第六組 |
| 4 |
第七組 |
| 3 |
第八組 |
| 1 |
①鄭州市某中學(xué)利用每周日的時間進行社會實踐活動,以公布的
為標準,如果
小于180,則去進行社會實踐活動.以統(tǒng)計數(shù)據(jù)中的頻率為概率,求該校周日進行社會實踐活動的概率;
②在“創(chuàng)建文明城市”活動中,驗收小組把鄭州市的空氣質(zhì)量作為一個評價指標,從當月的空氣質(zhì)量監(jiān)測數(shù)據(jù)中抽取3天的數(shù)據(jù)進行評價,設(shè)抽取到
不小于180的天數(shù)為
,求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
Ⅰ
討論
的單調(diào)性;
Ⅱ
當
時,若關(guān)于x的不等式
恒成立,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體
的棱長為2,
,
,
,
分別是
,
,
,
的中點,則過
且與
平行的平面截正方體所得截面的面積為____,
和該截面所成角的正弦值為______.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com