【題目】在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1中,點(diǎn)E,F分別是棱C1D1,B1C1的中點(diǎn),P是上底面A1B1C1D1內(nèi)一點(diǎn),若AP∥平面BDEF,則線段AP長(zhǎng)度的取值范圍是( )
A.[
,
]B.[
,
]C.[
,
]D.[
,
]
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面上一動(dòng)點(diǎn)A的坐標(biāo)為
.
(1)求點(diǎn)A的軌跡E的方程;
(2)點(diǎn)B在軌跡E上,且縱坐標(biāo)為
.
(i)證明直線AB過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo);
(ii)分別以A,B為圓心作與直線
相切的圓,兩圓公共弦的中點(diǎn)為H,在平面內(nèi)是否存在定點(diǎn)P,使得
為定值?若存在,求出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
的離心率為
,且橢圓上一點(diǎn)
的坐標(biāo)為
.
(1)求橢圓
的方程;
(2)設(shè)直線
與橢圓
交于
,
兩點(diǎn),且以線段
為直徑的圓過(guò)橢圓的右頂點(diǎn)
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中假命題是( )
A.若隨機(jī)變量
服從正態(tài)分布
,
,則
;
B.已知直線
平面
,直線
平面
,則“
”是“
”的必要不充分條件;
C.若
,則
在
方向上的正射影的數(shù)量為![]()
D.命題
的否定![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐
中,
,
,
,
,
.
![]()
(1)求證:平面
平面
;
(2)在線段
上是否存在點(diǎn)
,使得平面
與平面
所成銳二面角為
?若存在,求
的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的圖象在點(diǎn)
處的切線斜率為
,其中
為自然對(duì)數(shù)的底數(shù).
(1)求實(shí)數(shù)
的值,并求
的單調(diào)區(qū)間;
(2)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
是圓
上任意一點(diǎn),過(guò)點(diǎn)
作
軸于點(diǎn)
,延長(zhǎng)
到點(diǎn)
,使
.
(1)求點(diǎn)M的軌跡E的方程;
(2)過(guò)點(diǎn)
作圓O的切線l,交(1)中曲線E于
兩點(diǎn),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)又本
與橢圓
交于
、
兩個(gè)不同點(diǎn),且
的面積
,其中
為坐標(biāo)原點(diǎn).
(1)證明
和
均為定值;
(2)設(shè)線段
的中點(diǎn)為
,求
的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱柱
中,
平面ABCD,四邊形ABCD為平行四邊形,
,
.
![]()
(1)若
,求證:
//平面
;
(2)若
,且三棱錐
的體積為
,求
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com