【題目】有一解三角形的題目因紙張破損,有一條件不清,具體如下:在△ABC中,已知a=
,2cos2
=(
﹣1)cosB,c= , 求角A,若該題的答案是A=60°,請將條件補充完整.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知全集 U=R,集合 A={x|3≤x<7},B={x|2<log2 x<4}.
(1)求A∪B;
(2)求(UA )∩B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1、拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點O,從每條曲線上取兩個點,將其坐標(biāo)記錄于下表中:
x | 3 | ﹣2 | 4 |
|
y | ﹣2 | 0 | ﹣4 |
|
(1)求C1、C2的標(biāo)準(zhǔn)方程;
(2)請問是否存在直線l滿足條件:①過C2的焦點F;②與C1交不同兩點M、N且滿足
?若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)
(噸),一位居民的月用水量不超過
的部分按平價收費,超過
的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照
,
,
,
分成9組,制成了如圖所示的頻率分布直方圖.
![]()
(Ⅰ)求直方圖中
的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機(jī)抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為
,求
的分布列與數(shù)學(xué)期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)
(噸),估計
的值(精確到0.01),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一個各面都涂了油漆的正方體,切割為125個同樣大小的小正方體,經(jīng)過攪拌后,從中隨機(jī)取一個小正方體,記它的涂漆面數(shù)為X,則X的均值E(X)=( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,且
=2csinA
(1)確定角C的大。
(2)若c=
,且△ABC的面積為
,求a+b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知
=(2,1),
=(1,7),
=(5,1),設(shè)Z是直線OP上的一動點. ![]()
(1)求使
取最小值時的
;
(2)對(1)中求出的點Z,求cos∠AZB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列敘述正確的個數(shù)是( )
①若a>b,則ac2>bc2;
②若命題p為真命題題,命題q為假命題,則p∨q為假命題;
③若命題p:x0∈R,x
﹣x0+1≤0,則¬p:x∈R,x2﹣x+1>0.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知2ccosA+a=2b
(1)求角C的值;
(2)若c=2,且△ABC的面積為
,求a,b.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com