分析 (1)由遞推式可得數(shù)列{an}是以3為首項,以2為公比的等比數(shù)列,則答案可求;
(2)由遞推式可得數(shù)列{$\frac{{a}_{n}}{n+1}$}為常數(shù)列,結(jié)合已知求得數(shù)列{an}的通項公式;
(3)由遞推式構造等比數(shù)列{an+1},再由等比數(shù)列的通項公式得答案.
解答 解:(1)由a2=6,an+1-2an=0,可得:a1=3,$\frac{{a}_{n+1}}{{a}_{n}}=2$.
∴數(shù)列{an}是以3為首項,以2為公比的等比數(shù)列,
∴${a}_{n}=3•{2}^{n-1}$;
(2)由an+1=an+$\frac{{a}_{n}}{n+1}$,得$\frac{{a}_{n+1}}{(n+1)+1}=\frac{{a}_{n}}{n+1}$,
∴數(shù)列{$\frac{{a}_{n}}{n+1}$}為常數(shù)列.
由a1=1,得$\frac{{a}_{1}}{2}=\frac{1}{2}$,
∴$\frac{{a}_{n}}{n+1}=\frac{1}{2}$,則${a}_{n}=\frac{n+1}{2}$;
(3)由an+1=2an+3,得an+1+1=2(an+1),
又a1=2,∴a1+1=3≠0,
∴數(shù)列{an+1}是以3為首項,以2為公比的等比數(shù)列,
則${a}_{n}+1=3•{2}^{n-1}$,
∴${a}_{n}=3•{2}^{n-1}-1$.
故答案為:3•2n-1-1.
點評 本題考查數(shù)列遞推式,考查了等比關系的確定,訓練了等比數(shù)列通項公式的求法,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | [0,2] | B. | [$-\frac{1}{2}$,$\frac{3}{2}$] | C. | [$\frac{1}{2}$,$\frac{5}{2}$] | D. | [$\frac{1}{2}$,$\frac{3}{2}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 10n | B. | n10 | C. | 100n | D. | n100 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com