【題目】已知函數(shù)f(x)=
,且函數(shù)g(x)=loga(x2+x+2)(a>0,且a≠1)在[﹣
,1]上的最大值為2,若對(duì)任意x1∈[﹣1,2],存在x2∈[0,3],使得f(x1)≥g(x2),則實(shí)數(shù)m的取值范圍是( )
A.(﹣∞,﹣
]
B.(﹣∞,
]
C.[
,+∞)
D.[﹣
,+∞]
【答案】A
【解析】解:∵函數(shù)f(x)=
=31﹣x﹣m,
當(dāng)x1∈[﹣1,2]時(shí),f(x1)∈[
﹣m,9﹣m];
∵t=x2+x+2的圖象是開口朝上,且以直線x=﹣
為對(duì)稱軸的拋物線,
故x∈[﹣
,1]時(shí),t∈[
,4],
若函數(shù)g(x)=loga(x2+x+2)(a>0,且a≠1)在[﹣
,1]上的最大值為2,
則a=2,
即g(x)=log2(x2+x+2),
當(dāng)x2∈[0,3]時(shí),g(x2)∈[1,log214],
若對(duì)任意x1∈[﹣1,2],存在x2∈[0,3],使得f(x1)≥g(x2),
則
﹣m≥1,
解得m∈(﹣∞,﹣
],
故選:A.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+φ)+1(
)的最小正周期為π,且
.
(1)求ω和φ的值;
(2)函數(shù)f(x)的圖象縱坐標(biāo)不變的情況下向右平移
個(gè)單位,得到函數(shù)g(x)的圖象,
①求函數(shù)g(x)的單調(diào)增區(qū)間;
②求函數(shù)g(x)在
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】不超過實(shí)數(shù)x的最大整數(shù)稱為x整數(shù)部分,記作[x].已知f(x)=cos([x]-x),給出下列結(jié)論:
①f(x)是偶函數(shù);
②f(x)是周期函數(shù),且最小正周期為π;
③f(x)的單調(diào)遞減區(qū)間為[k,k+1)(k∈Z);
④f(x)的值域?yàn)椋╟os1,1].
其中正確命題的序號(hào)是______(填上所以正確答案的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
經(jīng)過點(diǎn)
,離心率為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)直線
與橢圓
交于
兩點(diǎn),點(diǎn)
是橢圓
的右頂點(diǎn),直線
與直線
分別與
軸交于
兩點(diǎn),試問在
軸上是否存在一個(gè)定點(diǎn)
使得
?若是,求出定點(diǎn)
的坐標(biāo);若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
.若曲線
在點(diǎn)
處的切線方程為
(
為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若關(guān)于
的不等式
在
上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家商場(chǎng)對(duì)同一種商品開展促銷活動(dòng),對(duì)購(gòu)買該商品的顧客兩家商場(chǎng)的獎(jiǎng)勵(lì)方案如下:
甲商場(chǎng):顧客轉(zhuǎn)動(dòng)如圖所示的圓盤,當(dāng)指針指向陰影部分(圖中兩個(gè)陰影部分均為扇形,且每個(gè)扇形的圓心角均為
,邊界忽略不計(jì))即為中獎(jiǎng).
![]()
乙商場(chǎng):從裝有2個(gè)白球、2個(gè)藍(lán)球和2個(gè)紅球(這些球除顏色外完全相同)的盒子中一次性摸出2球,若摸到的是2個(gè)相同顏色的球,則為中獎(jiǎng).
試問:購(gòu)買該商品的顧客在哪家商場(chǎng)中獎(jiǎng)的可能性大?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=
x2﹣(2a+2)x+(2a+1)lnx
(1)若曲線y=f(x)在點(diǎn)(2,f(2))處的切線的斜率小于0,求f(x)的單調(diào)區(qū)間;
(2)對(duì)任意的a∈[
,
],x1 , x2∈[1,2](x1≠x2),恒有|f(x1)﹣f(x2)|<λ|
﹣
|,求正數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)拋擲一顆骰子兩次,定義隨機(jī)變量
![]()
試寫出隨機(jī)變量
的分布列(用表格格式);
(2)拋擲一顆骰子兩次,在第一次擲得向上一面點(diǎn)數(shù)是偶數(shù)的條件下,求第二次擲得向上一面點(diǎn)數(shù)也是偶數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,圓C的方程為
(θ為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長(zhǎng)度,直線
的極坐標(biāo)方程
.
(Ⅰ)當(dāng)
時(shí),判斷直線
與
的關(guān)系;
(Ⅱ)當(dāng)
上有且只有一點(diǎn)到直線
的距離等于
時(shí),求
上到直線
距離為
的點(diǎn)的坐標(biāo).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com