【題目】
兩城相距
,在兩地之間距
城
處
地建一核電站給
兩城供電.為保證城市安全,核電站距城市距離不得少于
.已知供電費(fèi)用(元)與供電距離(
)的平方和供電量(億度)之積成正比,比例系數(shù)
,若
城供電量為
億度/月,
城為
億度/月.
(Ⅰ)把月供電總費(fèi)用
表示成
的函數(shù),并求定義域;
(Ⅱ)核電站建在距
城多遠(yuǎn),才能使供電費(fèi)用最小,最小費(fèi)用是多少?
【答案】(Ⅰ)
,定義域?yàn)?/span>
;(Ⅱ)核電站建在距
城
時(shí),才能使供電費(fèi)用最小,最小費(fèi)用為
元.
【解析】
試題(Ⅰ)利用供電費(fèi)用=電價(jià)×電量可建立函數(shù),同時(shí)根據(jù)題設(shè)要求寫(xiě)出其定義域;(Ⅱ)根據(jù)﹙Ⅰ﹚所得函數(shù)的解析式及定義域,通過(guò)配方,根據(jù)二次函數(shù)的性質(zhì)可求得最值,進(jìn)而確定電站所建的位置.
試題解析:(Ⅰ)
,即
,
由
得
,
所以函數(shù)解析式為
,定義域?yàn)?/span>
.
(Ⅱ)由
得
,
因?yàn)?/span>
所以
在
上單調(diào)遞增,所以當(dāng)
時(shí),
.
故當(dāng)核電站建在距
城
時(shí),才能使供電費(fèi)用最小,最小費(fèi)用為
元.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,現(xiàn)用一種新配方做試驗(yàn),生產(chǎn)了100件這種產(chǎn)品,并測(cè)量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面試驗(yàn)結(jié)果:
質(zhì)量指標(biāo)值 |
|
|
|
|
|
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(1)將答題卡上列出的這些數(shù)據(jù)的頻率分布表填寫(xiě)完整,并補(bǔ)齊頻率分布直方圖;
(2)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)與中位數(shù)(結(jié)果精確到0.1).
質(zhì)量指標(biāo)值分組 | 頻數(shù) | 頻率 |
| 6 | 0.06 |
| ||
| ||
| ||
| ||
合計(jì) | 100 | 1 |
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
:
和點(diǎn)
,
,
,
.
(1)若點(diǎn)
是圓
上任意一點(diǎn),求
;
(2)過(guò)圓
上任意一點(diǎn)
與點(diǎn)
的直線,交圓
于另一點(diǎn)
,連接
,
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠加工一批零件,加工過(guò)程中會(huì)產(chǎn)生次品,根據(jù)經(jīng)驗(yàn)可知,其次品率
與日產(chǎn)量
(萬(wàn)件)之間滿足函數(shù)關(guān)系式
,已知每生產(chǎn)1萬(wàn)件合格品可獲利2萬(wàn)元,但生產(chǎn)1萬(wàn)件次品將虧損1萬(wàn)元.(次品率=次品數(shù)/生產(chǎn)量).
(1)試寫(xiě)出加工這批零件的日盈利額
(萬(wàn)元)與日產(chǎn)量
(萬(wàn)件)的函數(shù);
(2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤(rùn)?最大利潤(rùn)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=
(c為常數(shù)),且f(1)=0.
(1)求c的值;
(2)證明函數(shù)f(x)在[0,2]上是單調(diào)遞增函數(shù);
(3)已知函數(shù)g(x)=f(ex),判斷函數(shù)g(x)的奇偶性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A、B、C為銳角三角形ABC的三個(gè)內(nèi)角,若向量
=(2-2sinA,cosA+sinA)與向量
=(1+sinA,cosA-sinA)互相垂直.
(Ⅰ)求角A;
(Ⅱ)求函數(shù)y=2sin2B+cos
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市的華為手機(jī)專賣店對(duì)該市市民使用華為手機(jī)的情況進(jìn)行調(diào)查.在使用華為手機(jī)的用戶中,隨機(jī)抽取100名,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)的頻率分布直方圖如圖:
![]()
(1)根據(jù)頻率分布直方圖,分別求出樣本的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)的估計(jì)值(均精確到個(gè)位);
(2)在抽取的這100名市民中,按年齡進(jìn)行分層抽樣,抽取20人參加華為手機(jī)宣傳活動(dòng),再?gòu)倪@20人中年齡在
和
的人群里,隨機(jī)選取2人各贈(zèng)送一部華為手機(jī),求這2名市民年齡都在
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為2的正方體
中,
、
分別為棱
、
的中點(diǎn),
是線段
上的點(diǎn),且
,若
、
分別為線段
、
上的動(dòng)點(diǎn),則
的最小值為__________.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一條長(zhǎng)36cm的直尺上刻劃n條刻度,使得用該尺能一次性度量
中的任意整數(shù)cm的長(zhǎng)度,試求n的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com