【題目】設f(x)是定義在區(qū)間(-∞,+∞)上且以2為周期的函數(shù),對k∈Z,用Ik表示區(qū)間(2k-1,2k+1),已知當x∈I0時,f(x)=x2.求f(x)在Ik上的解析式.
【答案】![]()
【解析】試題分析:先根據(jù)周期將所求區(qū)間Ik轉(zhuǎn)化到已知區(qū)間I0,再代入解析式中即得Ik上的解析式.
試題解析:設x∈(2k-1,2k+1)k∈Z,∴2k-1<x<2k+1,即-1<x-2k<1,
∵x∈I0時,有f(x)=x2,∴由-1<x-2k<1得f(x-2k)=(x-2k)2 ,
∵f(x)是以2為周期的函數(shù),∴f(x-2k)=f(x),
∴f(x)=(x-2k)2,k∈Z.
點睛:函數(shù)周期性的判定與應用(1)判定:判斷函數(shù)的周期性只需證明f(x+T)=f(x)(T≠0)即可.(2)應用:根據(jù)函數(shù)的周期性,可以由函數(shù)的局部性質(zhì)得到函數(shù)的整體性質(zhì),在解決具體問題時,要注意結(jié)論:若T是函數(shù)的周期,則kT(k∈Z且k≠0)也是函數(shù)的周期.
科目:高中數(shù)學 來源: 題型:
【題目】(導學號:05856323)已知在△ABC中,A,B,C所對的邊分別為a,b,c,R為△ABC外接圓的半徑,若a=1,
sin2B+
sin2C-sin2A=sin Asin Bsin C,則R的值為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(其中
,
為常數(shù),
為自然對數(shù)的底數(shù)).
(1)討論函數(shù)
的單調(diào)性;
(2)設曲線
在
處的切線為
,當
時,求直線
在
軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E,F(xiàn),且EF=
,則下列結(jié)論中錯誤的是( )
![]()
A. AC⊥BE
B. EF∥平面ABCD
C. 三棱錐A-BEF的體積為定值
D. △AEF的面積與△BEF的面積相等
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的左、右焦點分別是
,點
在橢圓
上,
是等邊三角形.
(Ⅰ)求橢圓
的標準方程;
(Ⅱ)點
在橢圓
上,線段
與線段
交于點
,若
與
的面積之比為
,求點
的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將邊長為
的正方形
(及其內(nèi)部)繞
旋轉(zhuǎn)一周形成圓柱,如圖,
長為
,
長為
,其中
與
在平面
的同側(cè).
![]()
(1)求三棱錐
的體積;
(2)求異面直線
與
所成的角的大小.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com