如圖1,四棱錐
中,
底面
,面
是直角梯形,
為側(cè)棱
上一點(diǎn).該四棱錐的俯視圖和側(cè)(左)視圖如圖2所示.
(1)證明:
平面
;
(2)線段
上是否存在點(diǎn)
,使
與
所成角的余弦值為
?若存在,找到所有符合要求的點(diǎn)
,并求
的長(zhǎng);若不存在,說(shuō)明理由.![]()
(1)
,證得
.又因?yàn)?
平面
推出
,
又
,所以
平面
.
(2)點(diǎn)
位于
點(diǎn)處,此時(shí)
;或
中點(diǎn)處,此時(shí)
.
解析試題分析:(1)【方法一】證明:由俯視圖可得,
,所以
. 2分
又因?yàn)?
平面
,所以
, 4分
又
,所以
平面
. 6分
(1)【方法二】證明:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/09/f/a4zsj1.png" style="vertical-align:middle;" />平面
,
,建立如圖所示
的空間直角坐標(biāo)系
. 在△
中,易得
,所以
,![]()
因?yàn)?
, 所以
,
.由俯視圖和左視圖可得:
.
所以
,
.
因?yàn)?
,所以
. 3分
又因?yàn)?
平面
,所以
,又
所以
平面
. 6分
(2)解:線段
上存在點(diǎn)
,使
與
所成角的余弦值為
.
證明如下:設(shè)
,其中
. 7分
所以
,
.
要使
與
所成角的余弦值為
,則有
, 9分
所以
,解得
或
,均適合
. 11分
故點(diǎn)
位于
點(diǎn)處,此時(shí)
;或
中點(diǎn)處,此時(shí)
, 12分
考點(diǎn):三視圖,立體幾何中的垂直關(guān)系、距離的計(jì)算。
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問(wèn)題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,利用空間向量,省去繁瑣的證明,也是解決立體幾何問(wèn)題的一個(gè)基本思路。注意運(yùn)用轉(zhuǎn)化與化歸思想,將空間問(wèn)題轉(zhuǎn)化成平面問(wèn)題。本題將三視圖與證明、計(jì)算問(wèn)題綜合考查,凸顯三視圖的基礎(chǔ)地位,必須正確還原幾何體。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知在四棱錐
中,底面
是邊長(zhǎng)為2的正方形,側(cè)棱
平面
,且
,
為底面對(duì)角線的交點(diǎn),
分別為棱
的中點(diǎn)![]()
(1)求證:
//平面
;
(2)求證:
平面
;
(3)求點(diǎn)
到平面
的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,
的直徑AB=4,點(diǎn)C、D為
上兩點(diǎn),且
CAB=45°,
DAB=60°,F(xiàn)為弧BC的中點(diǎn).沿直徑AB折起,使兩個(gè)半圓所在平面互相垂直,如圖2.
(I)求證:OF
平面ACD;
(Ⅱ)求二面角C—AD—B的余弦值;
(Ⅲ)在弧BD上是否存在點(diǎn)G,使得FG
平面ACD?若存在,試指出點(diǎn)G的位置;若不存在,請(qǐng)說(shuō)明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知AC⊥平面CDE,BD//AC,△ECD為等邊三角形,F(xiàn)為ED邊的中點(diǎn),CD=BD=2AC=2![]()
(1)求證:CF∥面ABE;
(2)求證:面ABE⊥平面BDE:
(3)求三棱錐F—ABE的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐P-ABCD的直觀圖(如圖(1))及左視圖(如圖(2)),底面ABCD是邊長(zhǎng)為2的正方形,平面PAB⊥平面ABCD,PA=PB。![]()
(1)求證:AD⊥PB;
(2)求異面直線PD與AB所成角的余弦值;
(3)求平面PAB與平面PCD所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知
平面
,
平面
,△
為等邊三角形,
,
為
的中點(diǎn).![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)求直線
和平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,側(cè)棱AA1⊥面ABC,D、E分別是棱A1B1、AA1的中點(diǎn),點(diǎn)F在棱AB上,且
.![]()
(Ⅰ)求證:EF∥平面BDC1;
(Ⅱ)求二面角E-BC1-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在矩形ABCD中,已知AB=3, AD=1, E、F分別是AB的兩個(gè)三等分點(diǎn),AC,DF相交于點(diǎn)G,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系:![]()
(1)若動(dòng)點(diǎn)M到D點(diǎn)距離等于它到C點(diǎn)距離的兩倍,求動(dòng)點(diǎn)M的軌跡圍成區(qū)域的面積;
(2)證明:E G ⊥D F。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
為正方形
的中心,四邊形
是平行四邊形,且平面
平面
,若
.![]()
(1)求證:
平面
.
(2)線段
上是否存在一點(diǎn)
,使
平面
?若存在,求
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com