【題目】已知橢圓E:
+
=1(a>b>0),其左右焦點(diǎn)為F1,F2,過F2的直線l交橢圓E于A,B兩點(diǎn),△AB F1的周長為8,且△AF1F2的面積最大時(shí),△AF1F2為正三角形。
(1)求橢圓E的方程;
(2)若MN是橢圓E經(jīng)過 原點(diǎn)的弦,MN||AB,求證:
為定值
【答案】(1)
(2)4
【解析】試題分析:(I)根據(jù)題意列出關(guān)于
、
、
的方程組,結(jié)合性質(zhì)
, 求出
、
、
,即可得結(jié)果;(Ⅱ)直線與曲線聯(lián)立,根據(jù)韋達(dá)定理,弦長公式將
用
表示,消去
即可得結(jié)果.
試題解析:(I)由已知A,B在橢圓上,可得|AF1|+|AF2|=|BF1|=|BF2|=2a,
又△ABF1的周長為8,所以|AF1|+|AF2|+|BF1|=|BF2|=4a=8,即a=2,
由橢圓的對稱性可得,△AF1F2為正三角形當(dāng)且僅當(dāng)A為橢圓短軸頂點(diǎn),
則a=2c,即c=1,b2=a2﹣c2=3,
則橢圓C的方程為
(Ⅱ)證明:若直線l的斜率不存在,即l:x=1,求得|AB|=3,|MN|=2
,可得
=4;
若直線l的斜率存在,設(shè)直線l:y=k(x﹣1),
設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),
代入橢圓方程
+
,可得(3+4k2)x2﹣8k2x+4k2﹣12=0,
有x1+x2 =
,x1x2=
,
|AB|
,
由y=kx代入橢圓方程,可得x=±
,
|MN|=![]()
即有
=4.
綜上可得
為定值4.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(選修4—5:不等式選講)
已知函數(shù)
.
(1)若不等式
的解集為
,求
的值;
(2)若對
,
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
的離心率為
,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為
.
(1)求橢圓C的方程;
(2)設(shè)直線l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為
,求△AOB面積的最大值,并求此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱柱
的底面是邊長為
的菱形,且
,
平面
,
,設(shè)
為
的中點(diǎn)
![]()
(1)求證:
平面![]()
(2)點(diǎn)
在線段
上,且
平面
,求平面
和平面
所成銳角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角三角形ABC中,a,b,c分別為角A,B,C所對的邊,且
(1)求角C的大;
(2)若
,且三角形ABC的面積為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形
中,點(diǎn)
,
分別是
,
的中點(diǎn),將
分別沿
,
折起,使
兩點(diǎn)重合于
.
![]()
(Ⅰ)求證:平面
;
(Ⅱ)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2014年3月的“兩會(huì)”上,李克強(qiáng)總理在政府工作報(bào)告中,首次提出“倡導(dǎo)全民閱讀”,某學(xué)校響應(yīng)政府倡導(dǎo),在學(xué)生中發(fā)起讀書熱潮.現(xiàn)統(tǒng)計(jì)了從2014年下半年以來,學(xué)生每半年人均讀書量,如下表:
時(shí)間 | 2014年下半年 | 2015年上半年 | 2015年下半年 | 2016年上半年 | 2016年下半年 |
時(shí)間代號(hào) |
|
|
|
|
|
人均讀書量 |
|
|
|
|
|
根據(jù)散點(diǎn)圖,可以判斷出人均讀書量
與時(shí)間代號(hào)
具有線性相關(guān)關(guān)系.
(1)求
關(guān)于
的回歸方程
;
(2)根據(jù)所求的回歸方程,預(yù)測該校2017年上半年的人均讀書量.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
, ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)
,
.
(Ⅰ)討論
的極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若對于任意
,總有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的焦距為2,過右焦點(diǎn)和短軸一個(gè)端點(diǎn)的直線的斜率為
,
為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)斜率為
的直線
與橢圓
相交于
兩點(diǎn),記
面積的最大值為
,證明: ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com