【題目】如圖所示,在某海濱城市A附近的海面出現(xiàn)臺風(fēng)活動.據(jù)監(jiān)測,目前臺風(fēng)中心位于城市A的東偏南60°方向、距城市A300km的海面點P處,并以20km/h的速度向西偏北30°方向移動.如果臺風(fēng)影響的范圍是以臺風(fēng)中心為圓心的圓形區(qū)域,半徑為
km,將問題涉及范圍內(nèi)的地球表面看成平面,判斷城市A是否會受到上述臺風(fēng)的影響.如果會,求出受影響的時間;如果不會,說明理由.
![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(
)求函數(shù)
的單調(diào)區(qū)間及最值.
(
)若對
,
恒成立,求
的取值范圍.
(
)求證:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1:y=cos x,C2:y=sin (2x+
),則下面結(jié)論正確的是( )
A. 把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個單位長度,得到曲線C2
B. 把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移
個單位長度,得到曲線C2
C. 把C1上各點的橫坐標(biāo)縮短到原來的
倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個單位長度,得到曲線C2
D. 把C1上各點的橫坐標(biāo)縮短到原來的
倍,縱坐標(biāo)不變,再把得到的曲線向左平移
個單位長度,得到曲線C2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為慶祝黨的98歲生日,某高校組織了“歌頌祖國,緊跟黨走”為主題的黨史知識競賽。從參加競賽的學(xué)生中,隨機抽取40名學(xué)生,將其成績分為六段
,
,
,
,
,
,到如圖所示的頻率分布直方圖.
![]()
(1)求圖中
的值及樣本的中位數(shù)與眾數(shù);
(2)若從競賽成績在
與
兩個分?jǐn)?shù)段的學(xué)生中隨機選取兩名學(xué)生,設(shè)這兩名學(xué)生的競賽成績之差的絕對值不大于
分為事件
,求事件
發(fā)生的概率.
(3)為了激勵同學(xué)們的學(xué)習(xí)熱情,現(xiàn)評出一二三等獎,得分在
內(nèi)的為一等獎,得分在
內(nèi)的為二等獎, 得分在
內(nèi)的為三等獎.若將頻率視為概率,現(xiàn)從考生中隨機抽取三名,設(shè)
為獲得三等獎的人數(shù),求
的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
設(shè)函數(shù)
.
(Ⅰ)求
的最小值及取得最小值時
的取值范圍;
(Ⅱ)若集合
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
,
為參數(shù)),以坐標(biāo)原點
為極點,
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
,若直線
與曲線
相切;
(1)求曲線
的極坐標(biāo)方程與直線
的直角坐標(biāo)方程;
(2)在曲線
上取兩點
,
與原點
構(gòu)成
,且滿足
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三國時代吳國數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用
,化簡,得
.設(shè)勾股形中勾股比為
,若向弦圖內(nèi)隨機拋擲
顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com