【題目】給出如下幾個結(jié)論:①命題“x∈R,sinx+cosx=2”的否定是“x∈R,sinx+cosx≠2”;②命題“x∈R,sinx+
≥2”的否定是“x∈R,sinx+
<2”;③對于x∈(0,
),tanx+
≥2;
④x∈R,使sinx+cosx=
.其中正確的為( )
A.③
B.③④
C.②③④
D.①②③④
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
分別是焦距為
的橢圓
的左、右頂點(diǎn),
為橢圓
上非頂點(diǎn)的點(diǎn),直
線的斜率分別為
,且
.
(1)求橢圓
的方程;
(2)直線
(與
軸不重合)過點(diǎn)
且與橢圓
交于
兩點(diǎn),直線
與
交于點(diǎn)
,試求
點(diǎn)的軌跡是否是垂直
軸的直線,若是,則求出
點(diǎn)的軌跡方程,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某金匠以黃金為原材料加工一種飾品,經(jīng)多年的數(shù)據(jù)統(tǒng)計(jì)得知,該金匠平均每加5 個飾品中有4個成品和1個廢品,每個成品可獲利3萬元,每個廢品損失1萬元,假設(shè)該金匠加工每件飾品互不影響,以頻率估計(jì)概率.
(1)若金金匠加工4個飾品,求其中廢品的數(shù)量不超過1的概率;
(2)若該金匠加工了 3個飾品,求他所獲利潤的數(shù)學(xué)期望.
(兩小問的計(jì)算結(jié)果都用分?jǐn)?shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C:
的左焦點(diǎn)為F,過點(diǎn)F的直線與橢圓C相交于A,B兩點(diǎn),直線l的傾斜角為60°,
. ![]()
(1)求橢圓C的離心率;
(2)如果|AB|=
,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,邊a、b、c分別是角A、B、C的對邊,且滿足bcosC=(3a﹣c)cosB.
(1)求cosB;
(2)若
=4,b=4
,求邊a,c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=
.
(1)若f(x)>k的解集為{x|x<﹣3或x>﹣2},求k的值;
(2)若對任意x>0,f(x)≤t恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)銳角△ABC的三內(nèi)角A、B、C所對邊的邊長分別為a、b、c,且 a=1,B=2A,則b的取值范圍為( )
A.(
,
)
B.(1,
)
C.(
,2)
D.(0,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若函數(shù)
與
的圖象恰好相切與點(diǎn)
,求實(shí)數(shù)
的值;
(2)當(dāng)
時,
恒成立,求實(shí)數(shù)
的取值范圍;
(3)求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和Sn , 且滿足2Sn=an2+an .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列bn=
+
,數(shù)列{bn}的前n項(xiàng)和為Tn , 求證:Tn<2n+
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com