欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.若直線y=4x是曲線f(x)=x4+a的一條切線,則a的值為( 。
A.1B.2C.3D.4

分析 求出函數(shù)的導數(shù),利用切線的斜率,設出切點坐標,列出方程求解即可.

解答 解:設切點坐標為:(m,4m),∵f′(x)=4x3,∴f′(m)=4m3=4,解得m=1,∴14+a=4,解得a=3.
故選:C.

點評 本題考查函數(shù)的導數(shù)的應用,切線方程的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.某人向平面區(qū)域$|x|+|y|≤\sqrt{2}$內任意投擲一枚飛鏢,則飛鏢恰好落在單位圓x2+y2=1內的概率為( 。
A.$\frac{π}{4}$B.$\frac{{\sqrt{3}π}}{4}$C.$\frac{π}{8}$D.$\frac{{\sqrt{3}π}}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,已知點A(-a,0)、C(0,b),且S△OAC=1.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線l與橢圓相交于不同的兩點A、B,若D(a,0),且|BD|=$\frac{4}{5}$$\sqrt{17}$,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=x3+x,g(x)=f(x)-ax(a∈R).
(1)當a=4時,求函數(shù)g(x)的極大值;
(2)求曲線y=f(x)在點(1,f(1))處的切線l的方程;
(3)若函數(shù)g(x)在[0,1]上無極值,且g(x)在[0,1]上的最大值為3,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.用a、b表示兩條不同的直線,α、β表示兩個不同的平面,給出下列命題:
①若a∥b,a∥α,則b∥α;    ②若a⊥α,b⊥α,則a∥b;③若a∥α,b⊥α,則a⊥b;    ④若a⊥α,α∥β,則a⊥β.
其中正確的是②③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=e2x-1-2x.
(1)求f(x)的極值;
(2)求函數(shù)g(x)=$\frac{lnx}{f(x)-{e}^{2x-1}}$在[1,e2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知集合A={x|x∈N|2≤x≤5},B={x|y=$\sqrt{3-x}$},則A∩B=( 。
A.{2}B.{2,3}C.{2,3,4}D.{4,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,過橢圓C的右焦點且垂直于x軸的直線與橢圓交于A,B兩點,且|AB|=$\sqrt{2}$.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過點(1,0)的直線l交橢圓C于E,F(xiàn)兩點,若存在點G(-1,y0)使△EFG為等邊三角形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在2016年高考結束后,針對高考成績是否達到了考生自己預期水平的情況,某校在高三部分畢業(yè)生內部進行了抽樣調查,現(xiàn)從高三年級A、B、C、D、E、F六個班隨機抽取了50人,將統(tǒng)計結果制成了如下的表格:
班級
抽取人數(shù)10 12 12 
其中達到預期水平的人數(shù) 3 6 6
(Ⅰ)根據(jù)上述的表格,估計該校高三學生2016年的高考成績達到自己的預期水平的概率;
(Ⅱ)若從E班、F班的抽取對象中,進一步各班隨機選取2名同學進行詳細調查,記選取的4人中,高考成績沒有達到預期水平的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案