欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.如圖所示,圓柱形容器的底面直徑等于球的直徑2R,把球放在在圓柱里,注入水,使水面與球正好相切,然后將球取出,此時容器中水的深度是( 。
A.2RB.$\frac{4R}{3}$C.$\frac{2}{3}R$D.$\frac{R}{3}$

分析 求出水的體積,即可求出容器中水的深度.

解答 解:由題意,水的體積=$π{R}^{2}•2R-\frac{4}{3}π{R}^{3}$=$\frac{2}{3}π{R}^{3}$,
∴容器中水的深度h=$\frac{\frac{2}{3}π{R}^{3}}{π{R}^{2}}$=$\frac{2}{3}π$,
故選:C.

點評 本題考查體積的計算,考查學生分析解決問題的能力,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知一個幾何體的三視圖如圖所示,俯視圖由一個直角三角形與一個半圓組成,則該幾何體的表面積為14+6$\sqrt{5}$+10π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),F(xiàn)1,F(xiàn)2為它的左、右焦點,P為橢圓上一點,已知∠F1PF2=60°,S${\;}_{△{F}_{1}P{F}_{2}}$=$\sqrt{3}$,且橢圓的離心率為$\frac{1}{2}$.
(1)求橢圓方程;
(2)已知T(-4,0),過T的直線與橢圓交于M、N兩點,求△MNF1面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知定義在R上的函數(shù)滿足f(x)=$\frac{f′(1)}{2}$•e2x-2+x2-2f(0)•x,則f′(1)=( 。
A.2B.eC.3D.2e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx-mx+m(m∈R).
(1)當m>0時,求f′(x)+mx的最小值;
(2)若f(x)>0在x∈(0,+∞)上有解,求實數(shù)m的取值集合M.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知正三棱柱ABC-A1B1C1的頂點都在同一個球面上,且該正三棱柱的體積為$\frac{\sqrt{3}}{2}$,三角形ABC周長為3,則這個球的體積為$\frac{16π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知(如圖)為某四棱錐的三視圖,則該幾何體體積為$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$是三個不共面向量,已知向量$\overrightarrow{a}$=$\frac{1}{2}$$\overrightarrow{i}$-$\overrightarrow{j}$+$\overrightarrow{k}$,$\overrightarrow$=5$\overrightarrow{i}$-2$\overrightarrow{j}$-$\overrightarrow{k}$,則4$\overrightarrow{a}$-3$\overrightarrow$=-13$\overrightarrow{i}$+2$\overrightarrow{j}$+7$\overrightarrow{k}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設(shè)f(x)=|x+1|-|x-4|.
(1)若f(x)≤-m2+6m恒成立,求實數(shù)m的取值范圍;
(2)設(shè)m的最大值為m0,a,b,c均為正實數(shù),當3a+4b+5c=m0時,求a2+b2+c2的最小值.

查看答案和解析>>

同步練習冊答案