【題目】已知?jiǎng)狱c(diǎn)
到定點(diǎn)
的距離比
到定直線
的距離小1.
(Ⅰ)求點(diǎn)
的軌跡
的方程;
(Ⅱ)過點(diǎn)
任意作互相垂直的兩條直線
,分別交曲線
于點(diǎn)
和
.設(shè)線段
,
的中點(diǎn)分別為
,求證:直線
恒過一個(gè)定點(diǎn);
(Ⅲ)在(Ⅱ)的條件下,求
面積的最小值.
【答案】(1)
(2)過定點(diǎn)
,(3)4
【解析】試題分析:(Ⅰ)先借助拋物線定義確定曲線的形狀是拋物線,再確定參數(shù)
,進(jìn)而求出
;(Ⅱ)先依據(jù)(Ⅰ)的結(jié)論分別建立
的方程,再分別與拋物線聯(lián)立方程組,求出弦中點(diǎn)為
的坐標(biāo),最后借助斜率的變化確定直線
經(jīng)過定點(diǎn);(Ⅲ)在(Ⅱ)前提條件下,先求出
,然后建立
面積關(guān)于變量
的函數(shù)
,再運(yùn)用基本不等式求其最小值:
解:(Ⅰ)由題意可知:動(dòng)點(diǎn)
到定點(diǎn)
的距離等于
到定直線
的距離.根據(jù)拋物線的定義可知,點(diǎn)
的軌跡
是拋物線.
∵
,∴拋物線方程為: ![]()
(Ⅱ)設(shè)
兩點(diǎn)坐標(biāo)分別為
,則點(diǎn)
的坐標(biāo)為
.
由題意可設(shè)直線
的方程為
.
由
,得
.
.
因?yàn)橹本
與曲線
于
兩點(diǎn),所以
.
所以點(diǎn)
的坐標(biāo)為
.
由題知,直線
的斜率為
,同理可得點(diǎn)
的坐標(biāo)為
.
當(dāng)
時(shí),有
,此時(shí)直線
的斜率
.
所以,直線
的方程為
,整理得
.
于是,直線
恒過定點(diǎn)
;
當(dāng)
時(shí),直線
的方程為
,也過點(diǎn)
.
綜上所述,直線
恒過定點(diǎn)
.
(Ⅲ)可求得
.所以
面積
.
當(dāng)且僅當(dāng)
時(shí),“
”成立,所以
面積的最小值為4.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的定義域?yàn)榧螦,B={x|x>3或x<2}.
(1)求A∩B;
(2)若C={x|x<2a+1},B∩C=C,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A=[2,log2t],集合B={x|y=
},
(1)對(duì)于區(qū)間[a,b],定義此區(qū)間的“長度”為b﹣a,若A的區(qū)間“長度”為3,試求實(shí)數(shù)t的值.
(2)若AB,試求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,cosB=
.
(Ⅰ)若c=2a,求
的值;
(Ⅱ)若C-B=
,求sinA的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題錯(cuò)誤的是( )
A.命題“若x2﹣3x+2=0,則x=1”的逆否命題為“若x≠1,則x2﹣3x+2≠0”
B.若p∧q為假命題,則p,q均為假命題
C.對(duì)命題P:存在x∈R,使得x2+x+1<0,則¬p為:任意x∈R,均有x2+x+1≥0
D.“x>2”是“x2﹣3x+2>0”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)如圖13,四棱錐P ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD=
,三棱錐P ABD的體積V=
,求A到平面PBC的距離.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分) 已知集合
在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)為(x,y) ,其中
。
(1)求點(diǎn)M不在x軸上的概率;
(2)求點(diǎn)M正好落在區(qū)域
上的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)有兩個(gè)分廠生產(chǎn)某種零件,按規(guī)定內(nèi)徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優(yōu)質(zhì)品.從兩個(gè)分廠生產(chǎn)的零件中各抽出了500件,量其內(nèi)徑尺寸,得結(jié)果如下表:
甲廠:
分組 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
頻數(shù) | 12 | 63 | 86 | 182 | 92 | 61 | 4 |
乙廠:
分組 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
頻數(shù) | 29 | 71 | 85 | 159 | 76 | 62 | 18 |
(1)試分別估計(jì)兩個(gè)分廠生產(chǎn)的零件的優(yōu)質(zhì)品率;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填下面
列聯(lián)表,并問是否有
的把握認(rèn)為“兩個(gè)分廠生產(chǎn)的零件的質(zhì)量有差異”.
甲 廠 | 乙 廠 | 合計(jì) | |
優(yōu)質(zhì)品 | |||
非優(yōu)質(zhì)品 | |||
合計(jì) |
附: ![]()
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出三種函數(shù)模型:f(x)=xn(n>0),g(x)=ax(a>1)和h(x)=logax(a>1).根據(jù)它們?cè)鲩L的快慢,則一定存在正實(shí)數(shù)x0 , 當(dāng)x>x0時(shí),就有( )
A.f(x)>g(x)>h(x)
B.h(x)>g(x)>f(x)
C.f(x)>h(x)>g(x)
D.g(x)>f(x)>h(x)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com