【題目】已知點(diǎn)A(sin 2x,1),B
,設(shè)函數(shù)f(x)=
(x∈R),其中O為坐標(biāo)原點(diǎn).
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)x∈
時(shí),求函數(shù)f(x)的最大值與最小值;
(3)求函數(shù)f(x)的單調(diào)減區(qū)間.
【答案】(1)T=π;(2)最大值和最小值分別為1和-
;(3)
,k∈Z.
【解析】
(1)由條件利用兩個(gè)向量的數(shù)量積的公式,三角恒等變換求得f(x)的解析式,再利用正弦函數(shù)的周期性求得函數(shù)f(x)的最小正周期;(2)當(dāng)x∈[0,
]時(shí),利用正弦函數(shù)的定義域和值域,求得函數(shù)f(x)的最大值與最小值;(3)由條件利用正弦函數(shù)的減區(qū)間求得函數(shù)f(x)的單調(diào)減區(qū)間.
(1)∵A(sin 2x,1),B
,
∴
=(sin 2x,1),
,
∴f(x)=
=sin 2x+cos![]()
=sin 2x+cos 2xcos
-sin 2xsin ![]()
=
sin 2x+
cos 2x
=sin 2xcos
+cos 2xsin ![]()
=sin
.
故f(x)的最小正周期T=
=π.
(2)∵0≤x≤
,
∴
≤2x+
,
∴-
≤sin
≤1,
∴f(x)的最大值和最小值分別為1和-
.
(3)由
+2kπ≤2x+
+2kπ,k∈Z得
+kπ≤x≤
+kπ,k∈Z,
∴f(x)的單調(diào)減區(qū)間是
,k∈Z.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在實(shí)數(shù)集上的函數(shù)f(x)=x2+ax(a為常數(shù)),g(x)=
x3﹣bx+m(b為常數(shù)),若函數(shù)f(x)在x=1處的切線(xiàn)斜率為3,x=
是g(x)的一個(gè)極值點(diǎn)
(1)求a,b的值;
(2)若存在x∈[﹣4,4]使得f(x)≥g(x)成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
,在
處的切線(xiàn)方程為
.
(1)求
,
;
(2)若
,證明:
.
【答案】(1)
,
;(2)見(jiàn)解析
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于
的方程組,解出即可;
(2)由(1)可知
,
,
由
,可得
,令
, 利用導(dǎo)數(shù)研究其單調(diào)性可得
,
從而證明
.
試題解析:((1)由題意
,所以
,
又
,所以
,
若
,則
,與
矛盾,故
,
.
(2)由(1)可知
,
,
由
,可得
,
令
,
,
令![]()
當(dāng)
時(shí),
,
單調(diào)遞減,且
;
當(dāng)
時(shí),
,
單調(diào)遞增;且
,
所以
在
上當(dāng)單調(diào)遞減,在
上單調(diào)遞增,且
,
故
,
故
.
【點(diǎn)睛】本題考查利用函數(shù)的切線(xiàn)求參數(shù)的方法,以及利用導(dǎo)數(shù)證明不等式的方法,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
【題型】解答題
【結(jié)束】
22
【題目】在平面直角坐標(biāo)系
中,曲線(xiàn)
的參數(shù)方程為
(
,
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)
的極坐標(biāo)方程為
,若直線(xiàn)
與曲線(xiàn)
相切;
(1)求曲線(xiàn)
的極坐標(biāo)方程;
(2)在曲線(xiàn)
上取兩點(diǎn)
,
與原點(diǎn)
構(gòu)成
,且滿(mǎn)足
,求面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一同學(xué)在電腦中打出若干個(gè)圈:○●○○●○○○●○○○○●○○○○○●…若將此若干個(gè)圈依此規(guī)律繼續(xù)下去,得到一系列的圈,那么在前2012個(gè)圈中的●的個(gè)數(shù)是 ( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為
(其中α為參數(shù)),曲線(xiàn)C2:(x﹣1)2+y2=1,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線(xiàn)C1的普通方程和曲線(xiàn)C2的極坐標(biāo)方程;
(2)若射線(xiàn)θ=
(ρ>0)與曲線(xiàn)C1,C2分別交于A,B兩點(diǎn),求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記函數(shù)
的定義域?yàn)?/span>
,
(
)的定義域?yàn)?/span>
.
(1)求
;
(2)若
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)隨機(jī)詢(xún)問(wèn)110名性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
![]()
由 列聯(lián)表算得
參照附表,得到的正確結(jié)論是( ).
A. 在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B. 在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C. 在犯錯(cuò)誤的概率不超過(guò)0.001的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 在犯錯(cuò)誤的概率不超過(guò)0.001的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=alnx+
,曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程為y=2.
(I)求a、b的值;
(Ⅱ)當(dāng)x>1時(shí),不等式f(x)>
恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com