【題目】設(shè)橢圓
(
)的一個焦點
點
為橢圓
內(nèi)一點,若橢圓
上存在一點
,使得
,則橢圓
的離心率的取值范圍是( )
A.
B.
C.
D. ![]()
【答案】A
【解析】![]()
記橢圓的左焦點為
,則
,即
,
,
,即
,即
,橢圓
的離心率的取值范圍是
,故選A.
【方法點晴】本題主要考查利用橢圓定與性質(zhì)求橢圓的離心率,屬于難題.求解與雙曲線性質(zhì)有關(guān)的問題時要結(jié)合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率范圍問題應(yīng)先將
用有關(guān)的一些量表示出來,再利用其中的一些關(guān)系構(gòu)造出關(guān)于
的不等式,從而求出
的范圍.本題是利用橢圓的定義以及三角形兩邊與第三邊的關(guān)系構(gòu)造出關(guān)于
的不等式,最后解出
的范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中錯誤的是( )
A. 平面內(nèi)一個三角形各邊所在的直線都與另一個平面平行,則這兩個平面平行;
B. 若兩個平面平行,則分別位于這兩個平面的直線也互相平行;
C. 平行于同一個平面的兩個平面平行;
D. 若兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,公園里有一湖泊,其邊界由兩條線段
和以
為直徑的半圓弧
組成,其中
為2百米,
為
.若在半圓弧
,線段
,線段
上各建一個觀賞亭
,再修兩條棧道
,使
. 記
.
![]()
(1)試用
表示
的長;
(2)試確定點
的位置,使兩條棧道長度之和最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)
圖象向左平移
個單位,再把各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)
的圖象,則下列說法中正確的是( )
A.
的最大值為
B.
是奇函數(shù)
C.
的圖象關(guān)于點
對稱D.
在
上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某特色餐館開通了美團外賣服務(wù),在一周內(nèi)的某特色菜外賣份數(shù)
(份)與收入
(元)之間有如下的對應(yīng)數(shù)據(jù):
外賣份數(shù) | 2 | 4 | 5 | 6 | 8 |
收入 | 30 | 40 | 60 | 50 | 70 |
![]()
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據(jù)此估計外賣份數(shù)為12份時,收入為多少元.
注:①參考公式:線性回歸方程系數(shù)公式
,
;
②參考數(shù)據(jù):
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機詢問100名性別不同的大學(xué)生是否愛好踢毽子,得到如下的列聯(lián)表:
![]()
隨機變量
經(jīng)計算,統(tǒng)計量K2的觀測值k0≈4.762,參照附表,得到的正確結(jié)論是( )
A. 在犯錯誤的概率不超過5%的前提下,認為“愛好該項運動與性別有關(guān)”
B. 在犯錯誤的概率不超過5%的前提下,認為“愛好該項運動與性別無關(guān)”
C. 有97.5%以上的把握認為“愛好該項運動與性別有關(guān)”
D. 有97.5%以上的把握認為“愛好該項運動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
在直角坐標系xOy中,設(shè)傾斜角為α的直線l:
(t為參數(shù))與曲線C:
(θ為參數(shù))相交于不同的兩點A,B.
(Ⅰ)若α=
,求線段AB中點M的坐標;
(Ⅱ)若|PA|·|PB|=|OP|
,其中P(2,
),求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三角形ABC中,
,
,
,D是線段BC上一點,且
,F為線段AB上一點.
![]()
(1)若
,求
的值;
(2)求
的取值范圍;
(3)若
為線段
的中點,直線
與
相交于點
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
+
=1(a>b>0)經(jīng)過點(1,
),且焦距為2
.
(1)求橢圓C方程;
(2)橢圓C的左,右焦點分別為F1,F2,過點F2的直線l與橢圓C交于A,B兩點,求△F2AB面積S的最大值并求出相應(yīng)直線l的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com