【題目】已知函數(shù)f(x)=4cosωxsin(ωx
)(ω>0)的最小正周期是π.
(1)求函數(shù)f(x)在區(qū)間(0,π)上的單調(diào)遞增區(qū)間;
(2)若f(x0)
,x0∈[
,
],求cos2x0的值.
【答案】(1)(0,
],[
,π).(2)![]()
【解析】
(1)利用兩角和差的三角公式結(jié)合輔助角公式進行化簡,結(jié)合周期公式求出ω的值,結(jié)合單調(diào)性進行求解即可.
(2)根據(jù)條件,結(jié)合兩角和差的余弦公式進行求解即可.
(1)f(x)=4cosωx(sinωxcos
cosωxsin
)
=4cosωx(
sinωx
cosωx)=2
sinωxcosωx﹣2cos2ωx
sin2ωx﹣cos2ωx﹣1=2sin(2ωx
)﹣1,
∵f(x)的最小正周期是π,
∴T
π,得ω=1,
即f(x)=2sin(2x
)﹣1,
由2kπ
2x
2kπ
,k∈Z
得kπ
x≤kπ
,k∈Z
即函數(shù)的增區(qū)間為[kπ
,kπ
],k∈Z,
∵x∈(0,π),
∴當(dāng)k=0時,
x
,此時0<x
,
當(dāng)k=1時,
x≤π
,此時
x<π,
綜上函數(shù)的遞增區(qū)間為(0,
],[
,π).
(2)若f(x0)
,
則2sin(2x0
)﹣1
,
則sin(2x0
)
,
∵x0∈[
,
],∴2x0∈[
,π],
2x0
∈[
,
],則cos(2x0
)
,
則cos2x0=cos(2x0
)=cos(2x0
)cos
sin(2x0
)sin![]()
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在
的奇函數(shù)
滿足:①
;②對任意
均有
;③對任意
,均有
.
(1)求
的值;
(2)利用定義法證明
在
上單調(diào)遞減;
(3)若對任意
,恒有
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下表為函數(shù)
部分自変量取值及其對應(yīng)函數(shù)值,為了便于研究,相關(guān)函數(shù)值取非整數(shù)值時,取值精確到0.01.
| 0.61 | -0.59 | -0.56 | -0.35 | 0 | 0.26 | 0.42 | 1.57 | 3.27 |
| 0.07 | 0.02 | -0.03 | -0.22 | 0 | 0.21 | 0.20 | -10.04 | -101.63 |
據(jù)表中數(shù)據(jù),研究該函數(shù)的一些性質(zhì);
(1)判斷函數(shù)
的奇偶性,并證明;
(2)判斷函數(shù)
在區(qū)間[0.55,0.6]上是否存在零點,并說明理由;
(3)判斷
的正負,并證明函數(shù)
在
上是單調(diào)遞減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的一個焦點為
,離心率為
.不過原點的直線
與橢圓
相交于
兩點,設(shè)直線
,直線
,直線
的斜率分別為
,且
成等比數(shù)列.
(1)求
的值;
(2)若點
在橢圓
上,滿足
的直線
是否存在?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域為D={x|x≠0},且滿足對于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判斷f(x)的奇偶性并證明你的結(jié)論;
(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時,討論函數(shù)
的單調(diào)性;
(2)當(dāng)
時,對于任意正實數(shù)
,不等式
恒成立,試判斷實數(shù)
的大小關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在
中,角
,
,
的對邊分別是
,且
.
(1)求角
的大小;
(2)已知等差數(shù)列
的公差不為零,若
,且
,
,
成等比數(shù)列,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)在直角坐標(biāo)系
中,直線
的參數(shù)方程為
為參數(shù))在以坐標(biāo)原點
為極點,
軸的正半軸為極軸的極坐標(biāo)系中,曲線
的極坐標(biāo)方程為
.
(1)寫出直線
的普通方程與曲線
的直角坐標(biāo)方程;
(2)設(shè)點
.若直線
與曲線
相交于不同的兩點
,求
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com