欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

  • <dfn id="5nm50"><var id="5nm50"></var></dfn><thead id="5nm50"></thead>

  • <address id="5nm50"></address>
    20.某網(wǎng)站體育版足球欄目發(fā)起了“射手的連續(xù)進(jìn)球與射手在場上的區(qū)域位置的關(guān)系”的調(diào)查活動(dòng),在所有參與調(diào)查的人中,持“有關(guān)系”“無關(guān)系”“不知道”態(tài)度的人數(shù)如表所示:
      有關(guān)系 無關(guān)系 不知道
     40歲以下 800 450 200
     40歲以上(含40歲) 100 150 300
    (1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個(gè)人,已知從持“有關(guān)系”態(tài)度的人中抽取45人,求n的值;
    (2)在持“不知道”態(tài)度的人中,用分層抽樣的方法抽取10人看作一個(gè)總體:
    ①從這10個(gè)人中選取3人,求至少一人在40歲以下的概率;
    ②從這10人中選取3人,若設(shè)40歲以下的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

    分析 (1)根據(jù)分層抽樣的特點(diǎn)“等比例抽樣”求解即可.
    (2)①利用古典概型概率公式以及對(duì)立事件概率公式求解;②利用超幾何分布的概率公式求概率,再求期望即可.

    解答 解:(1)由題意,得$\frac{800+100}{45}$=$\frac{800+450+200+100+150+300}{n}$,
    解得n=100.                                  
    (2)設(shè)所選取的人中有m人在40歲以下
    則$\frac{200}{200+300}=\frac{m}{10}$,解得m=4                          
    ①記“至少一人在40歲以下”為事件A
    則P(A)=1-$\frac{{C}_{6}^{3}}{{C}_{10}^{3}}$=$\frac{5}{6}$.
    ②由題意得X的可能取值為0,1,2,3,
    P(x=0)=$\frac{{C}_{6}^{3}}{{C}_{10}^{3}}$=$\frac{1}{6}$,P(x=1)=$\frac{{C}_{4}^{1}{C}_{6}^{2}}{{C}_{10}^{3}}$=$\frac{1}{2}$,
    P(x=2)=$\frac{{C}_{4}^{2}{C}_{6}^{1}}{{C}_{10}^{3}}$=$\frac{3}{10}$,p(x=3)=$\frac{{C}_{4}^{3}}{{C}_{10}^{3}}$=$\frac{1}{30}$,
    ∴x的分布列為

    X0123
    P$\frac{1}{6}$$\frac{1}{2}$$\frac{3}{10}$$\frac{1}{30}$
    E(x)=$0×\frac{1}{6}+1×\frac{1}{2}+2×\frac{3}{10}$+3×$\frac{1}{30}=\frac{6}{5}$.

    點(diǎn)評(píng) 遇到“至少”、“至多”,且正面情況較多時(shí),可以考慮對(duì)立事件的概率;.利用概率或隨機(jī)變量的分布列以及期望、方差解決應(yīng)用題時(shí),要注意隨機(jī)變量的實(shí)際意義.

    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    10.若函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x.
    (1)寫出函數(shù)f(x)(x∈R)的解析式.
    (2)若函數(shù)g(x)=f(x)-4x+2(x∈[1,2]),求函數(shù)g(x)的最小值.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    11.在△ABC中,a,b,c分別是角A,B,C所對(duì)的邊,O為△ABC三邊中垂線的交點(diǎn).
    (1)若b-c=$\frac{1}{4}$a,2sinB=3sinC,求cosA的值;
    (2)若b2-2b+c2=0,求$\overrightarrow{BC}$•$\overrightarrow{AO}$的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    8.已知函數(shù)f(x)=x2-2ax+5(a>1),若f(x)在區(qū)間(-∞,2]上是減函數(shù),且對(duì)任意的x1,x2∈[1,a+1],總有|f(x1)-f(x2)|≤4,求a的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:選擇題

    15.已知下列四組散點(diǎn)圖對(duì)應(yīng)的樣本統(tǒng)計(jì)數(shù)據(jù)的相關(guān)系數(shù)分別為r1,r2,r3,r4,則它們的大小關(guān)系為( 。
    A.r1<r3<r4<r2B.r2<r4<r3<r1C.r4<r2<r1<r3D.r3<r1<r2<r4

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    5.M科技公司從45名男員工、30名女員工中按照分層抽樣的方法組建了一個(gè)5人的科研小組.
    (1)求某員工被抽到的概率及科研小組中男女員工的人數(shù);
    (2)這個(gè)科研小組決定選出兩名員工做某項(xiàng)實(shí)驗(yàn),方法是先從小組中選出1名員工做實(shí)驗(yàn),該員工做完后,再從小組內(nèi)剩下的員工中選一名員工做實(shí)驗(yàn),求選出的兩名員工中恰有一名女員工的概率.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:選擇題

    12.已知不等式(2x+y)($\frac{a}{x}+\frac{1}{y}$)≥25對(duì)任意正實(shí)數(shù)x、y恒成立,則正實(shí)數(shù)a的最小值為( 。
    A.16B.12C.8D.4

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    9.已知圓C的圓心在直線3x+y-5=0上,并且經(jīng)過原點(diǎn)和點(diǎn)A(3,-1).
    (Ⅰ)求圓C的方程.
    (Ⅱ)若直線l過點(diǎn)P(1,1)且截圓C所得的弦長為$\frac{{2\sqrt{21}}}{3}$,求直線l的方程.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    10.列表,用五點(diǎn)法畫出下列函數(shù)在[0,2π]上的圖象
    1、y=sinx+1
    2、y=sin(-x)+1.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案