如圖,四棱錐
的底面是正方形,每條側(cè)棱的長都是底面邊長的
倍,
為側(cè)棱
上的點。
(Ⅰ)求證:
;
(Ⅱ)若
平面
,求二面角
的大;
(Ⅲ)在(Ⅱ)的條件下,側(cè)棱
上是否存在一點
,
使得
平面
。若存在,求
的值;若不存在,試說明理由。
![]()
解法一:
(Ⅰ);連
,設
交于
于
,由題意知
.以O為坐標原點,
分別為
軸、
軸、
軸正方向,建立坐標系
如圖。
設底面邊長為
,則高
。 于是 ![]()
![]()
故
從而 ![]()
(Ⅱ)由題設知,平面
的一個法向量
,平面
的一個法向量
,設所求二面角為
,則
,所求二面角的大小為![]()
(Ⅲ)在棱
上存在一點
使
.由(Ⅱ)知
是平面
的一個法向量,
且 ![]()
設
則 ![]()
而
即當
時,
而
不在平面
內(nèi),故![]()
解法二:(Ⅰ)連BD,設AC交BD于O,由題意
。在正方形ABCD中,
,所以
,得
.
(Ⅱ)設正方形邊長
,則
。
又
,所以
,
連
,由(Ⅰ)知
,所以
,
且
,所以
是二面角
的平面角。
由
,知
,所以
,
即二面角
的大小為
。
Ⅲ)在棱SC上存在一點E,使![]()
由(Ⅱ)可得
,故可在
上取一點
,使
,過
作
的平行線與
的交點即為
。連BN。在
中知
,又由于
,故平面
,得
,由于
,故
.
【解析】略
科目:高中數(shù)學 來源: 題型:
(09年朝陽區(qū)二模文)(13分)
如圖,四棱錐
的底面是矩形,
底面
,
為
邊的中點,
與平面
所成的角為
,且
,
.
(Ⅰ) 求證:
平面
;
(Ⅱ)求二面角
的大小.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(09年山東實驗中學診斷三理)(13分)如圖:四棱錐
的底面
是提醒,腰
,
平分
且與
垂直,側(cè)面
都垂直于底面,平面
與底面
成60°角
(1)求證:
;
(2)求二面角
的大小![]()
![]()
![]()
![]()
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省高三第八次月考文科數(shù)學試卷 題型:解答題
如圖,四棱錐
的底面是平行四邊形,
平面
,
,
,
點
是
上的點,且
.
(Ⅰ)求證:
;
(Ⅱ)求
的值,使
平面
;
(Ⅲ)當
時,求三棱錐
與四棱錐
的體積之比.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年浙江省高三上學期摸底理科數(shù)學 題型:解答題
((本小題滿分14分)如圖,四棱錐
的底面
是正方形,側(cè)棱![]()
底面
,
,
、
分別是棱
、
的中點.
(1)求證:
; (2) 求直線
與平面
所成的角的正切值
![]()
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年四川省成都市高二3月月考數(shù)學試卷 題型:填空題
(本小題滿分12 分)
如圖,四棱錐
的底面是邊長為
的菱形,
,
平面
,
,
為
的中點,O為底面對角線的交點;
(1)求證:平面
平面
;
(2)求二面角
的正切值。
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com