(1)求直線AC與PB所成角的余弦值;
(2)在側(cè)面PAB內(nèi)找一點(diǎn)N,使NE⊥面PAC,并求出N點(diǎn)到AB和AP的距離.
![]()
解法一:(1)建立如圖所示的空間直角坐標(biāo)系,則A、B、C、D、P、E的坐標(biāo)分別為A(0,0,0)、B(
,0,0)、C(
,1,0)、D(0,1,0)、P(0,0,2)、E(0,
,1),從而
=(
,1,0),
=(
,0,-2).
![]()
設(shè)
與
的夾角為θ,則
cosθ=
=
=
,
∴AC與PB所成角的余弦值為
.
(2)由于N點(diǎn)在側(cè)面PAB內(nèi),故可設(shè)N點(diǎn)坐標(biāo)為(x,0,z),則
=(-x,
,1-z).
由NE⊥面PAC,可得
![]()
即
化簡得
∴![]()
即N點(diǎn)的坐標(biāo)為(
,0,1),從而N點(diǎn)到AB、AP的距離分別為1,
.
解法二:(1)設(shè)AC∩BD=O,連結(jié)OE,則OE∥PB, ∴∠EOA即為AC與PB所成的角或其補(bǔ)角.
![]()
在△AOE中,AO=1,OE=
PB=
,AE=
PD=
,
∴cos∠EOA=
=
,
即AC與PB所成角的余弦值為
.
(2)在面ABCD內(nèi)過D作AC的垂線交AB于F,則∠ADF=
.
連結(jié)PF,則在Rt△ADF中,DF=
=
,AF=AD·tan∠ADF=
.
設(shè)N為PF的中點(diǎn),連結(jié)NE,則NE∥DF.
∵DF⊥AC,DF⊥PA,∴DF⊥面PAC.從而NE⊥面PAC.
∴N點(diǎn)到AB的距離為
AP=1,N點(diǎn)到AP的距離為
AF=
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com