【題目】在互聯(lián)網(wǎng)時(shí)代,網(wǎng)校培訓(xùn)已經(jīng)成為青年學(xué)習(xí)的一種趨勢(shì),假設(shè)某網(wǎng)校的套題每日的銷售量
(單位:千套)與銷售價(jià)格
(單位:元/套)滿足的關(guān)系式
(
,
為常數(shù)),其中
與
成反比,
與
的平方成正比,已知銷售價(jià)格為5元/套時(shí),每日可售出套題21千套,銷售價(jià)格為3.5元/套時(shí),每日可售出套題69千套.
(1) 求
的表達(dá)式;
(2) 假設(shè)網(wǎng)校的員工工資,辦公等所有開銷折合為每套題3元(只考慮銷售出的套數(shù)),試確定銷售價(jià)格
的值,使網(wǎng)校每日銷售套題所獲得的利潤(rùn)最大.(保留1位小數(shù))
【答案】(1)
(
)(2) ![]()
【解析】
試題分析:(1) 求
的表達(dá)式,實(shí)質(zhì)確定正反比例的系數(shù),利用對(duì)應(yīng)關(guān)系列式:設(shè)
,
,則
,解得
(2)根據(jù)利潤(rùn)與銷售額、成本的關(guān)系可列函數(shù)關(guān)系式,是一個(gè)三次函數(shù).利用導(dǎo)數(shù)求函數(shù)最值:先求導(dǎo)數(shù),再確定導(dǎo)函數(shù)在定義域上的零點(diǎn),列表分析函數(shù)單調(diào)變化規(guī)律,可得函數(shù)最值
試題解析:(1) 因?yàn)?/span>
與
成反比,
與
的平方成正比,
所以可設(shè):
,
,![]()
則
則
因?yàn)殇N售價(jià)格為5元/套時(shí),每日可售出套題21千套,銷售價(jià)格為2.5元/套時(shí),每日可售出套題69千套
所以,
,即
,解得:
,
所以,
(
)
(2) 由(1)可知,套題每日的銷售量
,
設(shè)每日銷售套題所獲得的利潤(rùn)為![]()
則![]()
從而
時(shí),
,所以函數(shù)
在
上單調(diào)遞增
時(shí),
,所以函數(shù)
在
上單調(diào)遞減
所以
時(shí),函數(shù)
取得最大值
答:當(dāng)銷售價(jià)格為
元/套時(shí),網(wǎng)校每日銷售套題所獲得的利潤(rùn)最大.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)設(shè)函數(shù)
,求函數(shù)
的單調(diào)區(qū)間;
(2)若在區(qū)間
上不存在
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)
的對(duì)稱軸為
,
.
(1)求函數(shù)
的最小值及取得最小值時(shí)
的值;
(2)試確定
的取值范圍,使
至少有一個(gè)實(shí)根;
(3)當(dāng)
時(shí),
,對(duì)任意
有
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sinxcosx-
cos2x.
(1)求f(0)的值及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間
上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1) 求函數(shù)
的單調(diào)遞減區(qū)間;
(2) 當(dāng)
時(shí),
的最小值是
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求滿足
的
的取值;
(2)若函數(shù)
是定義在
上的奇函數(shù)
①存在
,不等式
有解,求
的取值范圍;
②若函數(shù)
滿足
,若對(duì)任意
,不等式
恒成立,求實(shí)數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐
,底面
為菱形,
平面
,
,
分別是
的中點(diǎn).
(Ⅰ)證明:
;
(Ⅱ)若
為
上的動(dòng)點(diǎn),
與平面
所成最大角的正切值為
,求二面角
的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題p:關(guān)于x的不等式x2+2ax+4>0對(duì)于一切x∈R恒成立,命題q:x∈11,2],x2-a≥0,若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間和極值;
(2)證明:當(dāng)
時(shí),函數(shù)
沒(méi)有零點(diǎn)(提示:
).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com