【題目】已知函數(shù)
.
(1)對于實(shí)數(shù)
,
,若
,有
,求證:方程
有兩個不相等的實(shí)數(shù)根;
(2)若
,函數(shù)
,求函數(shù)
在區(qū)間
上的最大值和最小值;
(3)若存在實(shí)數(shù)
,使得對于任意實(shí)數(shù)
,都有
,求實(shí)數(shù)
的取值范圍.
【答案】(1)證明見解析,(2)見解析,(3)![]()
【解析】
(1)通過計(jì)算一元二次方程的判別式大于0,可得方程有兩個不相等的實(shí)數(shù)根;
(2)化簡函數(shù)
,數(shù)形結(jié)合求函數(shù)的最值;
(3)令
,
,結(jié)合二次函數(shù)的圖像與性質(zhì)可得結(jié)果.
(1)
,
∴![]()
整理得:![]()
∴
∵x1,x2∈R,x1<x2,
∴△>0,
故方程有兩個不相等的實(shí)數(shù)根.
(2)
,
作出其函數(shù)圖象為:
![]()
當(dāng)
時,
在
上單調(diào)遞增,
∴
,
;
令
,又
,∴
,
∴當(dāng)
時,
,
;
當(dāng)
時,
,
;
綜上:當(dāng)
或
時,
,
;
當(dāng)
時,
,
;
(3)由題意可得
,
令
,
∴
,
∴對稱軸
,
∴
,
記
,
∴
,
求根公式得:
∴
∴
即
,
故實(shí)數(shù)
的取值范圍![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,曲線
在
處的切線方程為
.
(1)求
的解析式;
(2)當(dāng)
時,求證:
;
(3)若
對任意的
恒成立,則實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形
中,
為
的中點(diǎn),
,
,
,現(xiàn)在沿
將
折起使點(diǎn)
到點(diǎn)P處,得到三棱錐
,且平面
平面
.
![]()
(1)棱
上是否存在一點(diǎn)
,使得
平面
?請說明你的結(jié)論;
(2)求證:
平面
;
(3)求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線
:
的焦點(diǎn)
做直線
交拋物線于
,
兩點(diǎn),
的最小值為2.
![]()
(1)求拋物線
的標(biāo)準(zhǔn)方程;
(2)過
,
分別做拋物線
的切線,兩切線交于點(diǎn)
,且直線
,
分別與
軸交于點(diǎn)
,
,記
和
的面積分別為
和
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分別是BC,BB1,A1D的中點(diǎn).
![]()
(1)證明:MN∥平面C1DE;
(2)求二面角A-MA1-N的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體
中,M,N,E,F(xiàn)分別是棱A1B1,A1D1,B1C1,C1D1的中點(diǎn),求證:平面AMN∥平面EFDB.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A,B,C三點(diǎn)滿足
。
(1)求證:A,B,C三點(diǎn)共線;
(2)若A(1,cosx),B(1+sinx,cosx),且x∈[0,
],函數(shù)f(x)=
(2m+
)|
|+m2的最小值為5,求實(shí)數(shù)m的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的焦距為
,且
,圓
與
軸交于點(diǎn)
,
,
為橢圓
上的動點(diǎn),
,
面積最大值為
.
(1)求圓
與橢圓
的方程;
(2)圓
的切線
交橢圓
于點(diǎn)
,
,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com