![]()
圖2-1-21
思路分析:在圖2-1-21(1)中過(guò)點(diǎn)E作EN平行于BB1交CD于點(diǎn)N,連結(jié)NB并延長(zhǎng)交EF的延長(zhǎng)線于點(diǎn)M,連結(jié)AM,則AM即為有陰影的平面與平面ABCD的交線.
在圖2-1-21(2)中,延長(zhǎng)DC,過(guò)點(diǎn)C1作C1M∥A1B交DC的延長(zhǎng)線于點(diǎn)M,連結(jié)BM,則BM即為有陰影的平面與平面ABCD的交線.
![]()
圖2-1-22
證明:在圖2-1-22(3)中,因?yàn)橹本EN∥BF,
所以BNEF四點(diǎn)共面.
因此EF與BN相交,交點(diǎn)為M.
因?yàn)镸∈EF,且M∈NB,而EF
平面AEF,NB
平面ABCD,
所以M是平面ABCD與平面AEF的公共點(diǎn).
又因?yàn)辄c(diǎn)A是平面AEF和平面ABCD的公共點(diǎn),故AM為兩平面的交線.
在圖2-1-22(4)中,C1M在平面CDD1C1內(nèi),因此與DC的延長(zhǎng)線相交,交點(diǎn)為M,則點(diǎn)M為平面A1C1B與平面ABCD的公共點(diǎn),又點(diǎn)B是這兩個(gè)平面的公共點(diǎn),因此直線BM是兩平面的交線.
綠色通道:作截面時(shí),要注意截面的完整性,應(yīng)畫(huà)出截面圖與所給幾何體各個(gè)面的交線.確定兩個(gè)平面的交線,就是找兩個(gè)平面的兩個(gè)公共點(diǎn),一般題目都會(huì)給出一個(gè)公共點(diǎn),在確定另一個(gè)公共點(diǎn)時(shí)通常利用分別在已知的兩個(gè)平面內(nèi)的兩條直線的交點(diǎn)來(lái)確定.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
![]()
圖
則第七個(gè)三角形數(shù)是( )
A.27 B
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
![]()
圖2-1-3
試求第七個(gè)三角形數(shù)是( )
A.27 B.28 C.29 D.30
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
![]()
圖2-1-1
則第七個(gè)三角形數(shù)是( )
A.27 B.28 C.29 D.30
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖2-21,正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E為DD1的中點(diǎn),
(1)判斷BD1和過(guò)A、C、E三點(diǎn)的平面的位置關(guān)系,
并證明你的結(jié)論。
(2)求
ACE的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
己知在銳角ΔABC中,角
所對(duì)的邊分別為
,且![]()
(I )求角
大;
(II)當(dāng)
時(shí),求
的取值范圍.
![]()
20.如圖1,在平面內(nèi),
是
的矩形,
是正三角形,將
沿
折起,使
如圖2,
為
的中點(diǎn),設(shè)直線
過(guò)點(diǎn)
且垂直于矩形
所在平面,點(diǎn)
是直線
上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)
位于平面
的同側(cè)。
(1)求證:
平面
;
(2)設(shè)二面角
的平面角為
,若
,求線段
長(zhǎng)的取值范圍。
![]()
![]()
21.已知A,B是橢圓
的左,右頂點(diǎn),
,過(guò)橢圓C的右焦點(diǎn)F的直線交橢圓于點(diǎn)M,N,交直線
于點(diǎn)P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動(dòng)點(diǎn),R和Q的橫坐標(biāo)之和為2,RQ的中垂線交X軸于T點(diǎn)
(1)求橢圓C的方程;
(2)求三角形MNT的面積的最大值
22. 已知函數(shù)
,
(Ⅰ)若
在
上存在最大值與最小值,且其最大值與最小值的和為
,試求
和
的值。
(Ⅱ)若
為奇函數(shù):
(1)是否存在實(shí)數(shù)
,使得
在
為增函數(shù),
為減函數(shù),若存在,求出
的值,若不存在,請(qǐng)說(shuō)明理由;
(2)如果當(dāng)
時(shí),都有
恒成立,試求
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com