分析 由sinC+sinB=2sinA,可得BA+CA=2BC,利用B(-5,0),C(5,0),CA+BA=20>CB,符合橢圓定義,所以△ABC的頂點A的軌跡方程可求.
解答 解:∵sinC+sinB=2sinA,
∴由正弦定理可得BA+CA=2BC,
∵B(-5,0),C(5,0),
∴BA+CA=20>CB,
∴△ABC的頂點A的軌跡是以B、C為焦點,長軸長為20的橢圓(除去與x軸的兩個交點).
∴a=10,c=5,∴b2=a2-c2=75,
∴△ABC的頂點A的軌跡方程為$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{75}$=1(y≠0).
故答案為:$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{75}$=1(y≠0).
點評 本題考查橢圓的定義,考查橢圓的標(biāo)準(zhǔn)方程,考查學(xué)生的計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{6}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 最大值為1,圖象關(guān)于直線$x=\frac{π}{2}$對稱 | B. | 在$({-\frac{3π}{8},\frac{π}{8}})$上單調(diào)遞增,為偶函數(shù) | ||
| C. | 周期為π,圖象關(guān)于點$({\frac{3π}{8},0})$對稱 | D. | 在$({0,\frac{π}{4}})$上單調(diào)遞增,為奇函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com