已知橢圓C過點(diǎn)
是橢圓的左焦點(diǎn),P、Q是橢圓C上的兩個(gè)動(dòng)點(diǎn),且|PF|、|MF|、|QF|成等差數(shù)列。
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求證:線段PQ的垂直平分線經(jīng)過一個(gè)定點(diǎn)A;
(3)設(shè)點(diǎn)A關(guān)于原點(diǎn)O的對稱點(diǎn)是B,求|PB|的最小值及相應(yīng)點(diǎn)P的坐標(biāo)。
(1)
(2)
(3)![]()
(1)設(shè)橢圓
的方程為
,由已知,得
,解得![]()
所以橢圓的標(biāo)準(zhǔn)方程為
…………3分
(2)證明:設(shè)
。由橢圓的標(biāo)準(zhǔn)方程為
,可知
![]()
同理
………4分
∵
,∴![]()
∴
…………5分
①當(dāng)
時(shí),由
,得![]()
從而有![]()
設(shè)線段
的中點(diǎn)為
,由
…………6分
得線段
的中垂線方程為
…………7分
∴
,該直線恒過一定點(diǎn)
…………8分
②當(dāng)
時(shí),
或 ![]()
線段
的中垂線是
軸,也過點(diǎn)
,
∴線段
的中垂線過點(diǎn)
…………10分
(3)由
,得
。
又
,∴![]()
…………12分
∴
時(shí),點(diǎn)
的坐標(biāo)為
…………14分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:山東省棗莊市2008屆高三第一次調(diào)研考試數(shù)學(xué)試題(理) 題型:044
已知橢圓C過點(diǎn)
是橢圓的左焦點(diǎn),P、Q是橢圓C上的兩個(gè)動(dòng)點(diǎn),且|PF|、|MF|、|QF|成等差數(shù)列.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求證:線段PQ的垂直平分線經(jīng)過一個(gè)定點(diǎn)A;
(3)設(shè)點(diǎn)A關(guān)于原點(diǎn)O的對稱點(diǎn)是B,求|PB|的最小值及相應(yīng)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省威遠(yuǎn)中學(xué)2009學(xué)年高三2月月考數(shù)學(xué)理科 人教版 人教版 題型:044
已知橢圓C過點(diǎn)
是橢圓的左焦點(diǎn),P、Q是橢圓C上的兩個(gè)動(dòng)點(diǎn),且|PF|、|MF|、|QF|成等差數(shù)列.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求證:線段PQ的垂直平分線經(jīng)過一個(gè)定點(diǎn)A;
(3)設(shè)點(diǎn)A關(guān)于原點(diǎn)O的對稱點(diǎn)是B,求|PB|的最小值及相應(yīng)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C過點(diǎn)
是橢圓的左焦點(diǎn),P、Q是橢圓C上的兩個(gè)動(dòng)點(diǎn),且|PF|、|MF|、|QF|成等差數(shù)列。
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求證:線段PQ的垂直平分線經(jīng)過一個(gè)定點(diǎn)A;
(3)設(shè)點(diǎn)A關(guān)于原點(diǎn)O的對稱點(diǎn)是B,求|PB|的最小值及相應(yīng)點(diǎn)P的坐標(biāo)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)單元檢測:圓錐曲線與方程(1)(解析版) 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com