【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓E :
的焦距為4,兩條準(zhǔn)線間的距離為8,A,B分別為橢圓E的左、右頂點.
![]()
(1)求橢圓E 的標(biāo)準(zhǔn)方程;
(2)已知圖中四邊形ABCD 是矩形,且BC=4,點M,N分別在邊BC,CD上,AM與BN相交于第一象限內(nèi)的點P .①若M,N分別是BC,CD的中點,證明:點P在橢圓E上;②若點P在橢圓E上,證明:
為定值,并求出該定值.
【答案】(1)
;(2)①證明見解析;②證明見解析
【解析】
(1)由
求得
,進(jìn)而求得橢圓的方程;
(2)①分別求得
,
坐標(biāo),再求得直線
與直線
方程,即可求得交點坐標(biāo),進(jìn)而得證;②分別設(shè)直線
的方程為
,直線
的方程為
,求得點
,
坐標(biāo),則
,利用斜率公式求證即可
(1)由題,
,則
,所以
,
所以橢圓
的標(biāo)準(zhǔn)方程為:![]()
(2)證明:①由(1)可得
,
,
因為
,且四邊形
是矩形,
所以
,
,
因為點
分別是
的中點,
所以
,
,
則直線
為:
,即
,
直線
為:
,即
,
所以
,解得
,即![]()
因為
,
所以點
在橢圓
上
②設(shè)直線
的方程為
,
令
,得
,
設(shè)直線
的方程為
,
令
,得
,
,
設(shè)![]()
,則
,
,
![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程為
.
(1)設(shè)橢圓的左右焦點分別為
、
,點
在橢圓上運動,求
的值;
(2)設(shè)直線
和圓
相切,和橢圓交于
、
兩點,
為原點,線段
、
分別和圓
交于
、
兩點,設(shè)
、
的面積分別為
、
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了了解高一年級學(xué)生學(xué)習(xí)數(shù)學(xué)的狀態(tài),從期中考試成績中隨機(jī)抽取50名學(xué)生的數(shù)學(xué)成績,按成績分組:第1組
,第2組
,第3組
,第4組
,第5組
,得到的頻率分布直方圖如圖所示.
![]()
(1)由頻率分布直方圖,估計這50名學(xué)生數(shù)學(xué)成績的中位數(shù)和平均數(shù)(保留到0.01);
(2)該校高一年級共有1000名學(xué)生,若本次考試成績90分以上(含90分)為“優(yōu)秀”等次,則根據(jù)頻率分布直方圖估計該校高一學(xué)生數(shù)學(xué)成績達(dá)到“優(yōu)秀”等次的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行六面體ABCD﹣A1B1C1D1中,AA1=A1D,AB=BC,∠ABC=120°.
![]()
(1)證明:AD⊥BA1;
(2)若平面ADD1A1⊥平面ABCD,且A1D=AB,求直線BA1與平面A1B1CD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京聯(lián)合張家口獲得2022年第24屆冬奧會舉辦權(quán),我國各地掀起了發(fā)展冰雪運動的熱潮,現(xiàn)對某高中的學(xué)生對于冰雪運動是否感興趣進(jìn)行調(diào)查,該高中男生人數(shù)是女生的1.2倍,按照分層抽樣的方法,從中抽取110人,調(diào)查高中生“是否對冰雪運動感興趣”得到如下列聯(lián)表:
感興趣 | 不感興趣 | 合計 | |
男生 | 40 | ||
女生 | 30 | ||
合計 | 110 |
(1)補充完成上述
列聯(lián)表;
(2)是否有99%的把握認(rèn)為是否喜愛冰雪運動與性別有關(guān).
附:
(其中
).
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是定義在
上的函數(shù),滿足
.
(1)證明:2是函數(shù)
的周期;
(2)當(dāng)
時,
,求
在
時的解析式,并寫出
在
(
)時的解析式;
(3)對于(2)中的函數(shù)
,若關(guān)于x的方程
恰好有20個解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)
,若存在定義域
內(nèi)某個區(qū)間
,使得
在
上的值域也是
,則稱函數(shù)
在定義域
上封閉.如果函數(shù)
在
上封閉,那么實數(shù)
的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點F為拋物線C:
(
)的焦點,過點F的動直線l與拋物線C交于M,N兩點,且當(dāng)直線l的傾斜角為45°時,
.
![]()
(1)求拋物線C的方程.
(2)試確定在x軸上是否存在點P,使得直線PM,PN關(guān)于x軸對稱?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com